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Abstract

In this paper we introduce and analyze a new mixed finite element method for the Brinkman model
of porous media flow with mixed boundary conditions. We use a dual-mixed formulation in which
the main unknown is given by the pseudostress. The original velocity and pressure unknowns
are easily recovered through a simple postprocessing. In addition, since the Neumann boundary
condition becomes essential, we impose it in a weak sense, which yields the introduction of the
trace of the fluid velocity over the Neumann boundary as the associated Lagrange multiplier. We
apply the Babuska-Brezzi theory to establish sufficient conditions for the well-posedness of the
resulting continuous and discrete formulations. In particular, a feasible choice of finite element
subspaces is given by Raviart-Thomas elements of order k ≥ 0 for the pseudostress, and continuous
piecewise polynomials of degree k+1 for the Lagrange multiplier. We also derive a reliable and ef-
ficient residual-based a posteriori error estimator for this problem. Suitable auxiliary problems, the
continuous inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decom-
position, and the local approximation properties of the Raviart-Thomas and Clément interpolation
operators are the main tools for proving the reliability. Then, Helmholtz’s decomposition, inverse
inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are
employed to show the efficiency. Finally, several numerical results illustrating the performance of
the method, confirming the theoretical properties of the estimator, and showing the behaviour of
the associated adaptive algorithm, are provided.
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1 Introduction

The derivation of pseudostress-based mixed finite element methods for linear and nonlinear problems
in continuum mechanics has become a very active research area during recent years. This fact has been
strongly motivated by the need of finding new ways of circumventing the main drawback of the usual
stress-based approach, namely the symmetry requirement of this tensor. While the weak imposition
of this condition through the introduction of a suitable Lagrange multiplier (rotation in elasticity and
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Casilla 297, Concepción, Chile, email: lgatica@ucsc.cl
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vorticity in fluid mechanics) was suggested long before (see, e.g. [3]), the use of the pseudostress
has become very popular lately, specially in the context of least-squares and augmented methods for
incompressible flows, mainly because of the non-necessity of the symmetry condition. This fact yielded
the appearing of two new approaches: the velocity-pressure-pseudostress and velocity-pseudostress
formulations (see, e.g. [9], [10], [19], and the references therein). In particular, augmented mixed
finite element methods for both pseudostress-based formulations of the stationary Stokes equations,
which extends analogue results for linear elasticity problems (see [21] and [24]), are introduced and
analyzed in [19]. In addition, the corresponding augmented mixed finite element schemes for the
velocity-pressure-stress formulation of the Stokes problem, in which the vorticity is introduced as
the Lagrange multiplier taking care of the weak symmetry of the stress, are studied in [18]. On the
other hand, the velocity-pressure-pseudostress formulation has also been applied to nonlinear Stokes
problems (see, e.g. [17], [22], [31]), which includes models arising in quasi-Newtonian fluids, extensions
to the setting of reflexive Banach spaces (with applications to nonlinear models such as the Carreau
law for viscoplastic flows), the use of trace-free tensors for the velocity gradient, and the incorporation
of three-field formulations with the pseudostress, the velocity, and the velocity gradient as unknowns.

However, in spite of the above mentioned works, it is surprising to realize that mixed finite ele-
ment methods for the pure velocity-pseudostress formulation of the Stokes equations, that is without
augmenting or employing least-squares terms, had not been studied until [11]. It is shown there that
Raviart-Thomas elements of index k ≥ 0 for the pseudostress and piecewise discontinuous polynomi-
als of degree k for the velocity lead to a stable Galerkin scheme with quasi-optimal accuracy. The
pressure and all the other physical quantities of interest can be computed in a postprocessing pro-
cedure without affecting the accuracy of approximation. The formulation from [11] is modified in
[25] by incorporating the pressure unknown into the discrete analysis, thus allowing further flexibil-
ity for approximating this unknown. More precisely, it is established there that the corresponding
Galerkin scheme only makes sense for pressure finite element subspaces not containing the traces of
the pseudostresses subspace. In particular, this is the case when Raviart-Thomas elements of index
k ≥ 0 for the pseudostress, and piecewise discontinuous polynomials of degree k for the velocity and
the pressure, are utilized. Otherwise, both discrete schemes coincide and hence one obviously stays
with the simplest one. Furthermore, reliable and efficient residual-based a posteriori error estimators
for both Galerkin schemes (without and with pressure) are also derived in [25]. More recently, the
analysis from [11] and [25] is extended in [26] to the class of nonlinear problems originally studied in
[22] and [31]. Indeed, the results in [26] refer to the a priori and a posteriori error analyses of the
velocity-pseudostress approach as applied to quasi-Newtonian Stokes flows whose kinematic viscosities
are a nonlinear monotone function of the velocity gradient of the fluid. The latter is introduced as
an auxiliary unknown, and the pressure is eliminated using the incompressibility condition, whence
the resulting variational formulation shows a twofold saddle point structure (as in [22] and [31]). An
augmented version of this formulation, which simplifies the requirements for well-posedness of the
associated Galerkin scheme, is also introduced and analyzed there.

On the other hand, a quite interesting problem in fluid mechanics for which, up to the authors’
knowledge, no stress-based or pseudostress-based approaches seem to be available, is the Brinkman
model of porous media flow. Actually, all the formulations found in the literature are based on the
typical Stokes-type (also called primal-mixed) formulation in which the velocity and the pressure are
kept as the main unknowns. The corresponding equations, which can be seen as a mixture of Darcy’s
and Stokes’ equations, are hard to solve, firstly because of the wide range of possible permeability
ratios, and secondly due to the nature of the mixed boundary conditions involved. One way of solving
the first issue is by means of stabilized methods (see, e.g. [8], [32]), whereas the weak imposition of
the Dirichlet boundary conditions, using Nitsche’s method, has been applied recently to deal with

2



the second difficulty (see, e.g. [29] and the references therein). According to the above, and in order
to provide an alternative way of dealing with the mixed boundary conditions, as well as to further
contribute in the numerical analysis of this problem, in the present work we develop the a priori and a
posteriori error analyses of a dual-mixed approach in which the pseudostress σ is the main unknown
of the resulting saddle point problem, and the velocity and pressure are easily recovered in terms
of σ through simple postprocessing formulae. In addition, as it is usual for dual-mixed methods,
the Dirichlet boundary condition for the velocity becomes natural in this case, and the Neumann
boundary condition, being essential, is imposed weakly through the introduction of the trace of the
velocity on that boundary as the associated Lagrange multiplier. The rest of the paper is organized
as follows. In Section 2 we define the Brinkman model, derive the pseudostress-based dual-mixed
formulation, and then show that it is well-posed. The associated mixed finite element method is
introduced and analyzed in Section 3. Next, in Section 4 we derive a reliable and efficient residual-
based a posteriori error estimator. Finally, some numerical results showing the good performance
of the mixed finite element methods, confirming the reliability and efficiency of the estimator, and
illustrating the behaviour of the associated adaptive algorithm are reported in Section 5.

We end this section with some notations to be used below. Given τ := (τij), ζ := (ζij) ∈ R2×2, we
write as usual

τ t := (τji), tr(τ ) :=

2∑
i=1

τii, τ d := τ − 1

2
tr(τ ) I, and τ : ζ :=

2∑
i,j=1

τijζij ,

where I is the identity matrix of R2×2. In addition, in what follows we utilize standard simplified
terminology for Sobolev spaces and norms. In particular, if O is a domain, S is a Lipschitz curve, and
r ∈ R, we define

Hr(O) := [Hr(O)]2 , Hr(O) := [Hr(O)]2×2 , and Hr(S) := [Hr(S)]2 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote H2

and H2×2, respectively. In turn, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [7]). The space of matrix valued functions whose rows
belong to H(div;O) will be denoted H(div;O). The Hilbert norms of H(div;O) and H(div;O) are
denoted by ‖ · ‖div;O and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O).
Finally, we employ 0 to denote a generic null vector (including the null functional and operator), and
use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent
of the discretization parameters, which may take different values at different places.

2 The Brinkman model and the pseudostress-based formulation

2.1 The boundary value problem

Let Ω be a bounded and simply connected domain in R2 with polygonal boundary Γ, and such that
all its interior angles lie in (0, 2π). Also, let ΓD and ΓN be disjoint open subsets of Γ, with |ΓD|,
|ΓN | 6= 0, such that Γ = Γ̄D ∪ Γ̄N . Then, given f ∈ L2(Ω) and g ∈ H−1/2(ΓN ), our boundary value
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problem reads as follows: Find a tensor field σ (pseudostress), a vector field u (velocity), and a scalar
field p (pressure) in appropriate spaces such that

σ = µ∇u− p I in Ω , αu− div(σ) = f in Ω , div(u) = 0 in Ω ,
u = 0 on ΓD , σν = g on ΓN ,

(2.1)

where µ is the effective viscosity, α is the viscosity divided by the permeability, ν is the unit outward
normal to Γ, and div denotes the usual divergence operator div acting along each row of the corres-

ponding tensor. We recall here that the Sobolev space H−1/2(ΓN ) is defined as the dual of H
1/2
00 (ΓN ),

where
H

1/2
00 (ΓN ) :=

{
v|ΓN

: v ∈ H1(Ω) , v = 0 on ΓD

}
.

The corresponding duality pairing with respect to the L2(ΓN ) - inner product is denoted by 〈· , 〉ΓN
.

In addition, throughout the paper ‖ · ‖0;1/2,ΓN
stands for the usual norms of H

1/2
00 (ΓN ) and H

1/2
00 (ΓN ).

Now, we note that the pair of equations given by

σ = µ∇u− p I in Ω , and div(u) = 0 in Ω ,

is equivalent to

σ = µ∇u− p I in Ω , and p = −1

2
tr(σ) in Ω , (2.2)

whence (2.1) can be rewritten as

1

µ
σd = ∇u in Ω , αu− div(σ) = f in Ω ,

u = 0 on ΓD , σν = g on ΓN .
(2.3)

2.2 The dual-mixed formulation

Initially we test the first equation of (2.3) with τ ∈ H(div; Ω) and use that tr(τ d) = 0. Then,

integrating by parts the expression

∫
Ω
∇u : τ , using the Dirichlet boundary condition, and introducing

the auxiliary unknow ξ := −u|ΓN
∈ H

1/2
00 (ΓN ), we arrive at

1

µ

∫
Ω
σd : τ d +

∫
Ω
u · div(τ ) + 〈τν , ξ〉ΓN

= 0 ∀ τ ∈ H(div; Ω) . (2.4)

In turn, the Neumann boundary condition is imposed weakly as

〈σν,λ〉ΓN
= 〈g,λ〉ΓN

∀λ ∈ H
1/2
00 (ΓN ) .

Finally, replacing u in (2.4) by

u =
1

α

{
f + div(σ)

}
in Ω , (2.5)

we obtain the variational formulation: Find (σ, ξ) ∈ H(div; Ω)×H
1/2
00 (ΓN ) such that

1

µ

∫
Ω
σd : τ d +

1

α

∫
Ω
div(σ) · div(τ ) + 〈τν, ξ〉ΓN

= − 1

α

∫
Ω
f · div(τ ) ,

〈σν,λ〉ΓN
= 〈g,λ〉ΓN

.
(2.6)
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for all (τ ,λ) ∈ H(div; Ω)×H
1/2
00 (ΓN ).

Equivalently, (2.6) can be rewritten as the following saddle point problem: Find (σ, ξ) ∈ H × Q
such that

a(σ, τ ) + b(τ , ξ) = − 1

α

∫
Ω
f · div(τ ) ∀ τ ∈ H ,

b(σ,λ) = 〈g,λ〉ΓN
∀ λ ∈ Q ,

(2.7)

where H := H(div; Ω), Q := H
1/2
00 (ΓN ), and a : H × H → R and b : H × Q → R are the bounded

bilinear forms defined by

a(ζ, τ ) :=
1

µ

∫
Ω
ζd : τ d +

1

α

∫
Ω
div(ζ) · div(τ ) ∀ ζ, τ ∈ H ,

and
b(τ ,λ) := 〈τν,λ〉ΓN

∀ τ ∈ H, ∀λ ∈ Q .

Note that the bounded linear operator B : H → Q induced by the bilinear form b is given by

B(τ ) := R0(τν) ∀ τ ∈ H,

where R0 : H
−1/2(ΓN ) → H

1/2
00 (ΓN ) is the corresponding Riesz operator.

2.3 Analysis of the dual-mixed formulation

In what follows we show the well-posedness of (2.7). We begin the analysis with the inf-sup condition
for the bilinear form b, which is equivalent to the surjectivity of B.

Lemma 2.1 There exists a positive constant β, depending only on Ω, such that

sup
τ∈H
τ 6=0

b(τ ,λ)

‖τ‖div;Ω
≥ β ‖λ‖0;1/2,ΓN

∀λ ∈ Q .

Proof. Given λ ∈ H
1/2
00 (ΓN ),λ 6= 0, we let z ∈ H1(Ω) be the unique weak solution of the problem

−∆ z = 0 in Ω, z = 0 on ΓD, ∇zν = R−1
0 (λ) on ΓN ,

and define τ̂ := ∇z in Ω. It follows that div(τ̂ ) = 0 in Ω, which shows that τ̂ ∈ H(div; Ω), and
then τ̂ ν = R−1

0 (λ) on ΓN . Hence, it is clear that B(τ̂ ) = λ, which proves that B is surjective.
2

Next, we let V be the kernel of B, that is V :=
{
τ ∈ H : τν = 0 on ΓN

}
, and prove

that the bilinear form a is V-elliptic. To this end, we first consider the decomposition

H(div; Ω) = H0(div; Ω)⊕ R I ,

where H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫
Ω
tr(τ ) = 0

}
. This means that for any τ ∈ H(div; Ω)

there exist unique τ 0 ∈ H0(div; Ω) and d := 1
|Ω|
∫
Ω tr(τ ) ∈ R such that τ = τ 0 + d I, whence

‖τ‖2div;Ω = ‖τ 0‖2div;Ω + 2 d2 |Ω|. In addition, we have the following lemmas.

Lemma 2.2 There exists C1 > 0, depending only on Ω, such that

C1 ‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H(div; Ω).
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Proof. See [4, Lemma 3.1] or [7, Proposition 3.1, Chapter IV].
2

Lemma 2.3 There exists C2 > 0, depending only on ΓN and Ω, such that

C2 ‖τ‖2div;Ω ≤ ‖τ 0‖2div;Ω ∀ τ ∈ V.

Proof. See [21, Lemma 2.2].
2

Then the V-ellipticity of a is proved as follows.

Lemma 2.4 There exists C > 0, depending only on ΓN and Ω, such that

a(τ , τ ) ≥ C ‖τ‖2div;Ω ∀ τ ∈ V .

Proof. Applying Lemmas 2.2 and 2.3, we deduce that for each τ ∈ V there holds

a(τ , τ ) =
1

µ
‖τ d‖20,Ω +

1

α
‖div(τ )‖20,Ω ,

≥ γ1 C1 ‖τ 0‖20,Ω +
1

2α
‖div(τ 0)‖20,Ω ,

≥ γ2 ‖τ 0‖2div;Ω ≥ C ‖τ‖2div;Ω ,

where γ1 := min{ 1
µ ,

1
2α}, γ2 := min{γ1C1,

1
2α}, and C := C2 γ2.

2

The well-posedness of our variational formulation (2.7) is provided by the following theorem.

Theorem 2.1 Assume that f ∈ L2(Ω) and g ∈ H−1/2(ΓN ). Then, there exists a unique solution
(σ, ξ) ∈ H × Q to (2.7). In addition, there exists a positive constant C, depending only on Ω, such
that

‖σ‖div;Ω + ‖ξ‖0;1/2,ΓN
≤ C

{
‖f‖0,Ω + ‖g‖−1/2,ΓN

}
.

Proof. It suffices to notice, according to Lemmas 2.1 and 2.4, that the bilinear forms a and b satisfy
the hypotheses of the Babuška-Brezzi theory. Then, a straightforward application of the classical
result given by [7, Theorem 1.1 in Chapter II] completes the proof.

2

3 The mixed finite element method

In this section, we define explicit finite element subspaces Hh of H(div; Ω) and Qh of H
1/2
00 (ΓN ) such

that the mixed finite element scheme associated with the continuous formulation (2.7) is well posed
and stable. For this purpose, let {Th}h>0 be a regular family of triangulations of the polygonal region

Ω̄ by triangles T of diameter hT , with mesh size h := max
{
hT : T ∈ Th

}
, and such that all the

points in Γ̄D ∩ Γ̄N become vertices of Th for all h > 0. Also, given an integer k ≥ 0 and a subset S of
R2, we denote by Pk(S) the space of polynomials defined in S of total degree at most k defined on S.
Then, for each integer k ≥ 0 and for each T ∈ Th, we define the local Raviart-Thomas space of order
k (see, e.g. [7], [33])

RT k(T ) := Pk(T )⊕ Pk(T )x
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where x :=

(
x1
x2

)
is a generic vector of R2. The corresponding finite element subspace Hh for the

unknown σ ∈ H(div; Ω) is given by the global Raviart-Thomas space of order k, that is,

Hh :=
{
τ ∈ H(div; Ω) : (τi1, τi2)

t ∈ RT k(T ) ∀ i ∈ {1, 2} , ∀T ∈ Th
}
. (3.1)

In turn, an eventual finite element subspace for the fluid velocity u would be given by the global space
of piecewise polynomials of degree ≤ k, that is

Qu
h :=

{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
. (3.2)

Next, let Σh be the partition on ΓN induced by the triangulation Th, and define the mesh size hΣ :=
max

{
|e| : e ∈ Σh

}
. Then we consider two possible choices for Qh, the finite element subspace for

the unknow ξ ∈ H
1/2
00 (ΓN ).

A first choice for Qh : Let Σh̃ be another partition of ΓN , completely independent from Σh, with

h̃ := max
{
|e| : e ∈ Σh̃

}
. Then, given an integer k ≥ 0, we define

Qh :=
{
λh̃ ∈ H

1/2
00 (ΓN ) : λh̃|e ∈ Pk+1(e) ∀ e ∈ Σh̃

}
. (3.3)

A second choice for Qh : Let us assume that the number of edges of Σh is an even number. Then,
we let Σ2h be the partition of ΓN arising by joining pairs of adjacent elements, and define for k = 0

Qh :=
{
λh ∈ H

1/2
00 (ΓN ) : λh|e ∈ P1(e) ∀ e ∈ Σ2h

}
. (3.4)

Then, the mixed finite element scheme associated with (2.7) reads : Find (σh, ξh) ∈ Hh×Qh such
that

a(σh, τ h) + b(τ h, ξh) = − 1

α

∫
Ω
f · div(τ h) ∀ τ h ∈ Hh ,

b(σh,λh) = 〈g,λh〉ΓN
∀λh ∈ Qh .

(3.5)

It is important to remark at this point that the second identity in (2.2) certainly suggests that the
pressure p can be approximated later on by the postprocessing formula

ph := −1

2
tr(σh) . (3.6)

In what follows we apply the discrete Babuška-Brezzi theory to show that (3.5) is well posed. We
begin with the proof of the discrete inf-sup condition for b, which establishes the existence of β > 0,
independent of h, such that

sup
τ h∈Hh
τ h 6=0

〈τ h ν,λh〉ΓN

‖τ h‖div;Ω
≥ β ‖λh‖0;1/2,ΓN

∀ λh ∈ Qh . (3.7)

Lemma 3.1 Let Qh be given by (3.3) and assume that both Σh and Σh̃ are quasi-uniform. Then there

exist constants C0 ∈ (0, 1] and β > 0, independent of h and h̃, such that whenever hΣ ≤ C0 h̃ , there
holds (3.7).
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Proof. It proceeds similarly to the proofs of [5, Lemmas 3.2 and 3.3]. We omit further details.
2

Lemma 3.2 Let Qh be given by (3.4) and asume that Th is quasi-uniform in a neighborhood of ΓN .
Then there exists β > 0, independent of h, such that (3.7) holds.

Proof. It follows as in the proof of [27, Lemma 5.2]. We refer to [27, Section 4.3 and 5] for full details.
2

We now aim to show the Vh-ellipticity of the bilinear form a, where Vh is the discrete kernel of
the operator induced by b, that is

Vh :=
{
τ h ∈ Hh : 〈τ h ν,λh〉ΓN

= 0 ∀ λh ∈ Qh

}
.

The following result provides the discrete analogue of Lemma 2.3.

Lemma 3.3 Assume that there exists a fixed λ̃ ∈ H
1/2
00 (ΓN ) such that λ̃ ∈ Qh for all h > 0 and

〈ν, λ̃〉ΓN
6= 0. Then there exists C > 0, independent of h, such that

C ‖τ h‖2div;Ω ≤ ‖τ 0h‖2div;Ω ∀ τ h ∈ Vh. (3.8)

Proof. Given τ h = τ 0h+dhI ∈ Vh, with τ 0h ∈ H0,h := Hh ∩H0(div; Ω) and dh ∈ R, we have that

0 = 〈τ h ν, λ̃〉ΓN
= 〈τ 0hν, λ̃〉ΓN

+ dh 〈ν, λ̃〉ΓN
,

which yields, dh = −〈τ 0h ν, λ̃〉ΓN

〈ν, λ̃〉ΓN

. Hence, by continuity of the normal trace operator we find that

|dh| ≤ C̃
‖λ̃‖0;1/2,ΓN

|〈ν, λ̃〉ΓN
|
‖τ 0h‖div;Ω ,

which, together with the fact that ‖τ h‖2div;Ω = ‖τ 0h‖2div;Ω + 2 |Ω| |dh|2, implies (3.8).
2

Now concerning the existence of λ̃ ∈ H
1/2
00 (ΓN ) such that λ̃ ∈ Qh for all h > 0 and 〈ν, λ̃〉ΓN

6= 0,
we may proceed as in [27, Section 3.2]. Indeed, we pick one corner point of ΓN and define a function
v that is continuous, linear on each side of ΓN , equal to one in the chosen vertex and zero on all other
ones. If ν1 and ν2 are the normal vectors on the two sides of ΓN that meet at the corner point, then
λ̃ := v(ν1 + ν2) satisfies the required property. If ΓN has no corner point then we just take any
interior point of ΓN that is a vertex of all the partitions of ΓN defining Qh and proceed as before.

Now, we are in a position to show the Vh-ellipticity of the bilinear form a.

Lemma 3.4 There exists c > 0, depending only on ΓN and Ω, such that

a(τ h, τ h) ≥ c ‖τ h‖2div;Ω ∀ τ h ∈ Vh.

Proof. Given τ h = τ 0h + dhI ∈ Vh, with τ 0h ∈ H0,h := Hh ∩ H0(div; Ω) and dh ∈ R, we apply
Lemmas 2.2 and 3.3 to deduce that

a(τ h, τ h) =
1

µ
‖τ h‖20,Ω +

1

α
‖div τ h‖20,Ω

≥ δ1C1 ‖τ 0h‖20,Ω +
1

2α
‖div τ 0h‖20,Ω

≥ δ2 ‖τ 0h‖2div;Ω ≥ δ2C ‖τ h‖2div;Ω,

8



where δ1 := min

{
1

µ
,
1

2α

}
and δ2 := min

{
δ1C1,

1

2α

}
, which completes the proof.

2

The following theorem establishes the well posedness of (3.5) and the associated Cea estimate.

Theorem 3.1 Let Qh be any of the two choices described above with the conditions assumed in and
derived from Lemmas 3.1 and 3.2. Then the Galerkin scheme (3.5) has a unique solution (σh, ξh) ∈
Hh ×Qh and there exist positive constants C, C̃, independent of h, such that

‖(σh , ξh)‖H×Q ≤ C
{
‖f‖0,Ω + ‖g‖−1/2,ΓN

}
,

and
‖(σ , ξ)− (σh , ξh)‖H×Q ≤ C̃ inf

(τ h,λh)∈Hh×Qh

‖(σ , ξ)− (τ h , λh)‖H×Q . (3.9)

Proof. Thanks to the previous results given by Lemmas 3.1, 3.2, and 3.4, the proof follows from a
direct application of the discrete Babuška-Brezzi theory (see, e.g. [28, Theorem 1.1, Chapter II] or [7,
Chapter II]).

2

In order to provide the rate of convergence of the Galerkin scheme (3.5), we need to introduce the
Raviart-Thomas interpolation operator (see [7], [33]) Πk

h : H1(Ω) → Hh, which, given τ ∈ H1(Ω), is
characterized by the following identities:∫

e
Πk

h(τ )ν · p =

∫
e
τ ν · p ∀ edge e ∈ Th , ∀p ∈ Pk(e) , when k ≥ 0 . (3.10)

and ∫
T
Πk

h(τ ) : ρ =

∫
T
τ : ρ ∀T ∈ Th , ∀ρ ∈ Pk−1(T ) , when k ≥ 1 . (3.11)

Recall, according to the notations introduced in Section 1, that Pk(e) := [Pk(e)]
2 and Pk−1(T ) :=

[Pk−1(T )]
2×2. Then, it is easy to show, using (3.10) and (3.11), that

div(Πk
h(τ )) = Pk

h(div τ ), (3.12)

where Pk
h : L2(Ω) → Qu

h is the L2(Ω) - orthogonal projector. It is well known (see, e.g. [15]) that for
each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖v −Pk
h(v)‖0,T ≤ C hmT |v|m,T ∀T ∈ Th . (3.13)

In addition, the operator Πk
h satisfies the following approximation properties (see, e.g. [7], [33]):

‖τ −Πk
h(τ )‖0,T ≤ C hmT |τ |m,T ∀T ∈ Th , (3.14)

for each τ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖div(τ −Πk
h(τ ))‖0,T ≤ C hmT |div(τ )|m,T ∀T ∈ Th , (3.15)

for each τ ∈ H1(Ω) such that div(τ ) ∈ Hm(Ω) , with 0 ≤ m ≤ k + 1, and

‖τ ν −Πk
h(τ )ν‖0,e ≤ C h1/2e ‖τ‖1,Te ∀ edge e ∈ Th , (3.16)
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for each τ ∈ H1(Ω), where Te ∈ Th contains e on its boundary. In particular, note that (3.15)
follows easily from (3.12) and (3.13). Moreover, the interpolation operator Πk

h can also be defined as
a bounded linear operator from the larger space Hs(Ω)∩H(div; Ω) into Hh for all s ∈ (0, 1] (see, e.g.
[30, Theorem 3.16]), and in this case there holds the following interpolation error estimate

‖τ −Πk
h(τ )‖0,T ≤ C hsT

{
‖τ‖s,T + ‖div(τ )‖0,T

}
∀T ∈ Th . (3.17)

Then, as a consequence of (3.17), (3.13), (3.14), (3.15), (3.16), and the usual interpolation esti-
mates, we find that Hh and Qh satisfy the following approximation properties:

(APσ
h ) For each s ∈ (0, k + 1] and for each τ ∈ Hs(Ω) with div(τ ) ∈ Hs(Ω) there exists τ h ∈ Hh

such that
‖τ − τ h‖div,Ω ≤ C hs

{
‖τ‖s,Ω + ‖div(τ )‖s,Ω

}
.

(AP
ξ
h ) For each s ∈ [0, k + 1] and for each λ ∈ H

s+1/2
00 (ΓN ), there exists λh ∈ Qh such that

‖λ− λh‖0;1/2,ΓN
≤ C hs ‖λ‖s+1/2,ΓN

.

The following theorem provides the theoretical rate of convergence of the Galerkin scheme (3.5), under
suitable regularity assumptions on the exact solution.

Theorem 3.2 Let (σ, ξ) ∈ H×Q and (σh, ξh) ∈ Hh×Qh be the unique solutions of the continuous
and discrete formulations (2.7) and (3.5), respectively. Assume that σ ∈ Hs(Ω), div(σ) ∈ Hs(Ω)

and ξ ∈ H
s+1/2
00 (ΓN ), for some s ∈ (0, k + 1]. Then, there exists C > 0, independent of h, such that

‖(σ, ξ)− (σh, ξh)‖H×Q ≤ C hs
{
‖σ‖s,Ω + ‖div(σ)‖s,Ω + ‖ξ‖s+1/2,ΓN

}
.

Proof. It is a straightforward consecuence of the Cea estimate (3.9) and the approximation properties

(APσ
h ) and (AP

ξ
h ).

2

4 A residual-based a posteriori error estimator

In this section we develop a residual-based a-posteriori error analysis for the mixed finite element
scheme (3.5).

4.1 Preliminaries

First we introduce several notations. Given T ∈ Th, we let E(T ) be the set of its edges, and let
Eh be the set of all edges of the triangulation Th. Then we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD} and Eh(ΓN ) := {e ∈ Eh : e ⊆ ΓN}.
Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)

t, and let se := (−ν2, ν1)t be
the corresponding fixed unit tangential vector along e. Then, given e ∈ Eh(Ω) and τ ∈ L2(Ω)
such that τ |T ∈ C(T ) on each T ∈ Th, we let [τ se] be the corresponding jump across e, that is,
[τ se] := (τ |T −τ |T ′)|e se, where T and T ′ are the triangles of Th having e as a common edge. Abusing
notation, when e ∈ Eh(Γ), we also write [τ se] := τ |e se. From now on, when no confusion arises, we
simple write s and ν instead of se and νe, respectively. Finally, given scalar, vector and tensor valued
fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, we let
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curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)

t

curl(ϕ2)
t

)
, and curl(τ ) :=

(
∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)
.

Then, letting (σ, ξ) ∈ H ×Q and (σh, ξh) ∈ Hh ×Qh be the unique solutions of the continuous and
discrete formulations (2.7) and (3.5), respectively, we define for each T ∈ Th a local error indicator θT
as follows:

θ2T := ‖f − Pk
h(f)‖20,T + h2T

∥∥∥∥ 1µσd
h −∇uh

∥∥∥∥2
0,T

+
h2T
µ2
∥∥curl(σd

h)
∥∥2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he
µ2
∥∥[(σd

h) s]
∥∥2
0,e

+
∑

e∈E(T )∩Eh(ΓD)

he
µ2
∥∥(σd

h) s
∥∥2
0,e

+
∑

e∈E(T )∩Eh(ΓN )

he

{∥∥∥∥( 1µσd
h

)
s+

dξh
ds

∥∥∥∥2
0,e

+ ‖ξh + uh‖20,e + ‖g − σh ν‖20,e

}
,

(4.1)

where, resembling (2.5), we set

uh :=
1

α

{
Pk
h(f) + div(σh)

}
in Ω . (4.2)

Note that the last term defining θ2T requires that g|e ∈ L2(e) ∀ e ∈ Eh(ΓN ). The residual character
of each term on the right hand side of (4.1) is quite clear. As usual the expression

θ :=

∑
T∈Th

θ2T


1/2

(4.3)

is employed as the global residual error estimator.

The following theorem constitutes the main result of this section.

Theorem 4.1 Let (σ, ξ) ∈ H ×Q and (σh, ξh) ∈ Hh ×Qh be the unique solutions of (2.7) and (3.5),
respectively. In addition, let u ∈ L2(Ω) be defined according to (2.5), that is u := 1

α {f + div(σ)},
and assume that the Neumann datum g belongs to L2(ΓN ). Then, there exist positive constants Ceff

and Crel, independent of h, such that

Ceff θ + h.o.t. ≤ ‖u− uh‖0,Ω + ‖(σ − σh, ξ − ξh)‖H×Q ≤ Crel θ. (4.4)

where h.o.t. stands for one or several terms of higher order.

The proof of Theorem 4.1 is separated into the two parts given by the next subsections. The
efficiency of the global error estimator (lower bound in 4.4) is proved below in Section 4.3, whereas
the corresponding reliability (upper bound in 4.4) is derived next.

4.2 Reliability

We begin with the following preliminary estimate.

Lemma 4.1 Let (σ, ξ) ∈ H ×Q and (σh, ξh) ∈ Hh ×Qh be the unique solutions of (2.7) and (3.5),
respectively. Then there exists C > 0, independent of h, such that

C ‖(σ − σh, ξ − ξh)‖H×Q ≤ sup
τ∈H
τ 6=0

|E(τ )|
‖τ‖div;Ω

+ ‖g − σh ν‖−1/2,ΓN
, (4.5)
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where, given any τ h ∈ Hh,

E(τ ) := 〈(τ − τ h)ν, ξh〉ΓN
+

1

µ

∫
Ω
σd
h : (τ − τ h) +

1

α

∫
Ω
(f + div(σh)) · div (τ − τ h) . (4.6)

Proof. We first observe from Theorem 2.1 that the bounded linear operator A : H×Q→ (H×Q)′ ≡
H ′ × Q′, which is induced by the left-hand side of the equations in (2.7), is an isomorphism. This
means, in particular, that there exists C > 0 such that

‖A(ρ, ζ)‖H′×Q′ ≥ C ‖(ρ, ζ)‖H×Q ∀ (ρ, ζ) ∈ H ×Q ,

which can be written, equivalently, as

C ‖(ρ, ζ)‖H×Q ≤ sup
(τ ,λ)∈H×Q

(τ ,λ)6=(0,0)

a(ρ, τ ) + b(τ , ζ) + b(ρ,λ)

‖(τ ,λ)‖H×Q
∀ (ρ, ζ) ∈ H ×Q .

In particular, for the Galerkin error (ρ, ζ) = (σ − σh, ξ − ξh), we obtain

C ‖(σ − σh, ξ − ξh)‖H×Q ≤ sup
(τ ,λ)∈H×Q

(τ ,λ) 6=(0,0)

a(σ − σh, τ ) + b(τ , ξ − ξh) + b(σ − σh,λ)

‖(τ ,λ)‖H×Q

≤ sup
(τ ,λ)∈H×Q

(τ ,λ)6=(0,0)

{
a(σ − σh, τ ) + b(τ , ξ − ξh)

‖τ‖div;Ω
+

b(σ − σh,λ)

‖λ‖0;1/2,ΓN

}

≤ sup
τ∈H
τ 6=0

Ẽ(τ )

‖τ‖div;Ω
+ sup

λ∈Q

λ 6=0

b(σ − σh,λ)

‖λ‖0;1/2,ΓN

,

where Ẽ(τ ) := a(σ−σh, τ ) + b(τ , ξ−ξh). But, from the second equation of (2.7) and the definition
of the bilinear form b, we see that b(σ − σh,λ) = 〈g − σh ν,λ〉ΓN

, which yields

sup
λ∈Q

λ 6=0

b(σ − σh,λ)

‖λ‖0;1/2,ΓN

= sup
λ∈Q

λ 6=0

〈g − σh ν,λ〉ΓN

‖λ‖0;1/2,ΓN

= ‖g − σh ν‖−1/2,ΓN
.

Next, we observe from the first equations of (2.7) and (3.5) that

a(σ, τ ) + b(τ , ξ) = F (τ ) ∀ τ ∈ H and a(σh, τ h) + b(τ h, ξh) = F (τ h) ∀ τ h ∈ Hh ,

where F (τ ) := − 1

α

∫
Ω
f · div(τ ) ∀ τ ∈ H. It follows that

Ẽ(τ ) = F (τ )− a(σh, τ )− b(τ , ξh) ∀ τ ∈ H

and
Ẽ(τ h) = 0 ∀ τ h ∈ Hh,

whence
Ẽ(τ ) = Ẽ(τ ) − Ẽ(τ h) = Ẽ(τ̂ ) ∀ τ ∈ H,
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where τ̂ := τ − τ h. In this way, it is easy to see, according to the definitions of F , a and b, that the
above expression for Ẽ leads to (4.6) with E = −Ẽ, thus completing the proof.

2

We now aim to bound the supremum on the right hand side of (4.5), for which we need a suitable
choice of τ h ∈ Hh. To this end, we will use the Clément interpolation operator Ih : H1(Ω) → Xh (cf.
[16]), where

Xh := {v ∈ C(Ω̄) : v|T ∈ P1(T ) ∀T ∈ Th}.
A vectorial versión of Ih, say Ih : H1(Ω) → Xh, which is defined componentwise by Ih, is also required.
The following lemma establishes the local approximation properties of Ih.

Lemma 4.2 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ih(v)‖0,T ≤ c1 hT ‖v‖1,4(T ) ∀T ∈ Th ,
and

‖v − Ih(v)‖0,e ≤ c2 h
1/2
e ‖v‖1,4(e) ∀e ∈ Eh ,

where 4(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} and 4(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= ∅}.
Proof. See [16].

2

Next, for each τ ∈ H we consider its Helmholtz decomposition

τ = curl(χ) + ∇z,

where χ ∈ H1(Ω) and z ∈ H2(Ω) satisfy ∆z = div τ in Ω, and

‖χ‖1,Ω + ‖z‖2,Ω ≤ C ‖τ‖div;Ω. (4.7)

Then, we let χh := Ih(χ) and define

τ h := Πk
h(ζ) + curl(χh) ∈ Hh , (4.8)

where ζ := ∇z ∈ H1(Ω) and Πk
h is the the Raviart-Thomas interpolation operator introduced before

(cf. (3.10) and (3.11)). We refer to (4.8) as a discrete Helmholtz decomposition of τ h. Therefore, we
can write

τ̂ := τ −Πk
h(ζ)− curl(χh) = ζ −Πk

h(ζ) + curl(χ− χh) , (4.9)

which, using (3.12) and the fact that div ζ = 4z = div τ in Ω, yields

div(τ̂ ) = div(ζ −Πk
h(ζ)) = (I− Pk

h)(div(ζ)) = (I− Pk
h)(div(τ )) . (4.10)

Hence, replacing (4.9) and (4.10) into (4.6), we find that

E(τ ) = E1(τ ) + E2(ζ) + E3(χ) , (4.11)

where

E1(τ ) :=
1

α

∫
Ω
(f + div(σh)) · (I− Pk

h)(div(τ )),

E2(ζ) :=

∫
Ω

1

µ
σd
h : (ζ −Πk

h(ζ)) + 〈(ζ −Πk
h(ζ))ν, ξh〉ΓN

,

(4.12)

and

E3(χ) :=

∫
Ω

1

µ
σd
h : curl(χ− χh) + 〈curl(χ− χh)ν, ξh〉ΓN

. (4.13)

The following three lemmas provide the upper bounds for |E1(τ )|, |E2(ζ)|, and |E3(χ)|.
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Lemma 4.3 There holds

|E1(τ )| ≤
1

α

∑
T∈Th

‖f − Pk
h(f)‖20,T


1/2

‖div(τ )‖0,Ω .

Proof. Since div(σh) belong to Qu
h (cf. (3.2)), and Pk

h is precisely the orthogonal projector onto Qu
h ,

we obtain from the first equation of (4.12) that

E1(τ ) =
1

α

∫
Ω
f · (I− Pk

h)(div(τ )) =
1

α

∫
Ω
(I− Pk

h)(f) · div(τ ) .

Thus, a simple application of the Cauchy-Schwarz inequality completes the proof.
2

Lemma 4.4 There exists C > 0, independent of µ and α, such that

|E2(ζ)| ≤ C

∑
T∈Th

h2T

∥∥∥∥ 1µσd
h −∇uh

∥∥∥∥2
0,T

+
∑

e∈Eh(ΓN )

he ‖ξh + uh‖20,e


1/2

‖τ‖div;Ω .

Proof. Since ζ ∈ H1(Ω), it follows that (ζ − Πk
h(ζ))ν |ΓN

belongs to L2(ΓN ), whence E2(ζ) (cf.
(4.12)) can be redefined as:

E2(ζ) :=
1

µ

∫
Ω
σd
h : (ζ −Πk

h(ζ)) +
∑

e∈Eh(ΓN )

∫
e
ξh · (ζ −Πk

h(ζ))ν . (4.14)

On the other hand, since uh|e ∈ Pk(e) for each edge e ∈ Eh (in particular for each edge e ∈ Eh(ΓN )),
and ∇uh|T ∈ Pk−1(T ) for each T ∈ Th, the identities (3.10) and (3.11) characterizing Πk

h, yield,
respectively, ∫

e
(ζ −Πk

h(ζ))ν · uh = 0 ∀ e ∈ Eh(ΓN ) ,

and ∫
T
(ζ −Πk

h(ζ)) : ∇uh = 0 ∀T ∈ Th .

Hence, introducing the above expressions into (4.14), we can write E2(ζ) as

E2(ζ) =
∑
T∈Th

∫
T

(
1

µ
σd
h −∇uh

)
: (ζ −Πk

h(ζ)) +
∑

e∈Eh(ΓN )

∫
e
(ξh + uh) · (ζ −Πk

h(ζ))ν ,

from which, applying the Cauchy-Schwarz inequality, the approximation properties (3.14) and (3.16)
(with m = 1), and the fact that ‖ζ‖1,Ω ≤ C ‖τ‖div;Ω (cf. (4.7)), we obtain the required estimate.

2

Lemma 4.5 There exists C > 0, independent of µ and α, such that

|E3(χ)| ≤ C

∑
T∈Th

h2T
µ2

‖curl(σd
h)‖20,T +

∑
e∈Eh(Ω)

he
µ2

‖[(σd
h) s]‖20,e +

∑
e∈Eh(ΓD)

he
µ2

‖(σd
h) s‖20,e

+
∑

e∈Eh(ΓN )

he

∥∥∥∥( 1µσd
h

)
s+

dξh
ds

∥∥∥∥2
0,e


1/2

‖τ‖div;Ω .
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Proof. We proceed similarly as in the proof of [23, Lemma 6] (see also [25, Lemma 4.3]). Integrating

by parts on each T ∈ Th, using that curl(χ− χh)ν =
d

ds
(χ− χh), and noting that

dξh
ds

∈ L2(ΓN ),

we obtain from (4.13) that

E3(χ) =
∑
T∈Th

∫
T

1

µ
σd
h : curl(χ− χh) + 〈 d

ds
(χ− χh), ξh〉ΓN

=
∑
T∈Th

1

µ

{∫
T
curl(σd

h) · (χ− χh)−
∫
∂T

(σd
h) sT · (χ− χh)

}
−
∫
ΓN

dξh
ds

· (χ− χh)

=
∑
T∈Th

1

µ

∫
T
curl(σd

h) · (χ− χh)−
∑

e∈Eh(Ω)

1

µ

∫
e
[(σd

h) s] · (χ− χh)

−
∑

e∈Eh(ΓD)

1

µ

∫
e
(σd

h) s · (χ− χh)−
∑

e∈Eh(ΓN )

∫
e

{( 1
µ
σd
h

)
s+

dξh
ds

}
· (χ− χh).

Next, since χh := Ih(χ), the approximation properties of Ih (cf. Lemma 4.2) yield

‖χ− χh‖0,T ≤ c1 hT ‖χ‖1,4(T ) ∀T ∈ Th , (4.15)

and
‖χ− χh‖0,e ≤ c2 h

1/2
e ‖χ‖1,4(e) ∀ e ∈ Eh . (4.16)

In this way, appling the Cauchy-Schwarz inequality to each term in the above expression for E3(χ),
and making use of the estimates (4.15), (4.16) and (4.7), and the fact that the number of triangles in
4(T ) and 4(e) are bounded, we conclude the proof.

2

As a consequence of the previous analysis we can establish the following upper bound for |E(τ )|.

Lemma 4.6 There exists C > 0, such that

|E(τ )| ≤ C

∑
T∈Th

{
‖f − Pk

h(f)‖20,T + h2T

∥∥∥∥ 1µσd
h −∇uh

∥∥∥∥2
0,T

+
h2T
µ2

‖curl(σd
h)‖20,T

}

+
∑

e∈Eh(Ω)

he
µ2

‖[(σd
h) s]‖20,e +

∑
e∈Eh(ΓD)

he
µ2

‖(σd
h) s‖20,e

+
∑

e∈Eh(ΓN )

he

{∥∥∥∥( 1µ σd
h

)
s+

dξh
ds

∥∥∥∥2
0,e

+ ‖ξh + uh‖20,e

}
1/2

‖τ‖div;Ω .

Proof. It follows straightforwardly from (4.11) and Lemmas 4.3, 4.4, and 4.5.
2

Having established the above bound for |E(τ )|, we conclude from Lemma 4.1 that

‖(σ − σh, ξ − ξh)‖H×Q ≤ C

∑
T∈Th

θ̂2T + ‖g − σh ν‖2−1/2,ΓN


1/2

, (4.17)
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where

θ̂2T := ‖f − Pk
h(f)‖20,T + h2T

∥∥∥∥ 1µσd
h −∇uh

∥∥∥∥2
0,T

+
h2T
µ2

‖curl(σd
h)‖20,T +

∑
e∈E(T )∩Eh(Ω)

he
µ2

‖[(σd
h) s]‖20,e

+
∑

e∈E(T )∩Eh(ΓD)

he
µ2

‖(σd
h) s‖20,e +

∑
e∈E(T )∩Eh(ΓN )

he

{∥∥∥∥( 1µσd
h

)
s+

dξh
ds

∥∥∥∥2
0,e

+ ‖ξh + uh‖20,e

}
.

In order to complete the upper bound for ‖(σ, ξ)− (σh, ξh)‖H×Q in terms of local error indicators,
we need to estimate the Neumann residual ‖g − σh ν‖−1/2,ΓN

. In fact, we have the following result.

Lemma 4.7 Assume that the Neumann datum g ∈ L2(ΓN ). Then there exists C > 0, independent
of h, such that

‖g − σh ν‖2−1/2,ΓN
≤ C

∑
e∈Eh(ΓN )

he ‖g − σh ν‖20,e .

Proof. Because of the definition of the subspace Hh, it follows that σh ν|∂T ∈ Pk(∂T ) for all T ∈ Th,
whence it is easy to see that g−σh ν ∈ L2(ΓN ). Then, from the second equation of the discrete scheme
(3.5), we obtain that g − σh ν is L2(ΓN )-orthogonal to Qh, which contains the space of continuous
piecewise linear functions. In this way, a straightforward application of [12, Theorem 2] yields

‖g − σh ν‖2−1/2,ΓN
≤ log

{
1 + Ch(ΓN )

} ∑
ẽ∈Σ2h

|ẽ| ‖g − σh ν‖20,ẽ ,

where Ch(ΓN ) := max

{
|ẽi|
|ẽj |

: |i− j| = 1, ẽi, ẽj ∈ Σ2h

}
. Since each edge e ∈ Σh is contained

in a segment ẽ in Σ2h, and both Σh and Σ2h are quasi-uniform, we find that∑
ẽ∈Σ2h

|ẽ| ‖g − σh ν‖20,ẽ ≤
∑

e∈Eh(ΓN )

he ‖g − σh ν‖20,e ,

and deduce the existence of C > 0, independent of h, such that log
{
1+Ch(ΓN )

}
≤ C. Consequently,

the above inequality becomes

‖g − σh ν‖2−1/2,ΓN
≤ C

∑
e∈Eh(ΓN )

he ‖g − σh ν‖20,e ,

which finishes the proof.
2

It is important to remark here, according to the statement of [12, Theorem 2], that the uniform
regularity of the mesh Σ2h insures that the constant C in Lemma 4.7 is independent of h, whence the
estimate provided there in terms of the computable local quantities ‖g−σh ν‖0,e becomes suitable for
the associated adaptive algorithm. Without that assumption, it would not make sense to apply that
theorem, and we would have just to keep the expression ‖g − σh ν‖−1/2,ΓN

in the a posteriori error
estimator, thus rendering a non-local and hence useless quantity for adaptivity.

Then, as a consequence of Lemmas 4.1 and 4.7, together with the estimate (4.17), we conclude
that there exists C > 0, independent of h, such that

‖(σ, ξ)− (σh, ξh)‖H×Q ≤ C θ , (4.18)
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where θ is the global a posteriori error estimator defined by (4.3) and (4.1).

On the other hand, the upper bound for ‖u − uh‖0,Ω is quite straightforward from the definition
of u and uh. Indeed, recalling that

u =
1

α

{
f + div(σ)

}
and uh =

1

α

{
Pk
h(f) + div(σh)

}
,

we easily obtain

‖u− uh‖0,Ω ≤ 1

α

{
‖f − Pk

h(f)‖0,Ω + ‖σ − σh‖div;Ω
}
. (4.19)

Finally, from (4.19) and (4.18) we have that there exists Crel > 0 such that

‖u− uh‖0,Ω + ‖(σ − σh, ξ − ξh)‖H×Q ≤ Crel θ ,

which proves the reliability of the estimator θ.

4.3 Efficiency

In this section we prove the efficiency of our a posteriori error estimator θ (lower bound in (4.4). In
other words, we derive suitable upper bounds for the eight terms defining the local error indicator θ2

T

(cf. (4.1)). We first notice, using the definitions of u (cf. (2.5)) and uh (cf. (4.2)), that

‖f − Pk
h(f)‖20,T ≤ 2α2 ‖u− uh‖20,T + 2 ‖σ − σh‖20,T . (4.20)

The upper bounds of the remaining seven terms, which depend on the mesh parameters hT and he,
will be derived next. To this we proceed as in [13] and [14] (see also [20]), and apply results ultimately
based on inverse inequalities (see [15]) and the localization technique introduced in [35], which is based
on triangle-bubble and edge-bubble functions. To this end, we now introduce further notations and
preliminary results. Given T ∈ Th and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and
edge-bubble functions, respectively (see [35, eqs. (1.4) and (1.6)]), which satisfy:

i) ψT ∈ P3(T ), supp(ψT ) ⊆ T , ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)}, ψe = 0 on ∂T \ e, and
0 ≤ ψT ≤ 1 in ωe.

We also recall from [34] that, given k ∈ N ∪ {0}, there exists a linear operator L : C(e) → C(T ) that
satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vectorial version of L, that
is the componentwise application of L, is denoted by L. Additional properties of ψT , ψe and L are
collected in the following lemma.

Lemma 4.8 Given k ∈ N∪ {0}, there exist positive constants c1, c2, c3, and c4, depending only on k
and the shape regularty of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ E(T ), there hold

‖ψT q‖20,T ≤ ‖q‖20,T ≤ c1 ‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ) , (4.21)

‖ψe L(p)‖20,T ≤ ‖p‖20,e ≤ c2 ‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e) , (4.22)

and
c3 he ‖p‖20,e ≤ ‖ψ1/2

e L(p)‖20,T ≤ c4 he ‖p‖20,e ∀ p ∈ Pk(e) . (4.23)
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Proof. See [34, Lemma 4.1].
2

The following inverse estimate will also be used.

Lemma 4.9 Let l,m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l,m
and the shape regularty of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−m
T |q|l,T ∀ q ∈ Pk(T ) . (4.24)

Proof. See [15, Theorem 3.2.6].
2

The following two lemmas are required for the terms involving the curl operator and the tangential
jumps across the edges of Th. Their proofs, which make use of Lemmas 4.8 and 4.9, can be found in
[6].

Lemma 4.10 Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition,
let ρ ∈ L2(Ω) be such that curl(ρ) = 0 on each T ∈ Th. Then, there exists c > 0, independent of h,
such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ− ρh‖0,T ∀T ∈ Th . (4.25)

Proof. See [6, Lemma 4.3].
2

Lemma 4.11 Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th, and let
ρ ∈ L2(Ω) be such that curl(ρ) = 0 in Ω. Then, there exists c > 0, independent of h, such that

‖[ρhsT ]‖0,e ≤ c h−1/2
e ‖ρ− ρh‖0,ωe ∀ e ∈ Eh . (4.26)

Proof. It is a slight modification of the proof of [6, Lemma 4.4]. We omit the details here.
2

We now apply Lemmas 4.10 and 4.11 to bound two other terms defining θ2
T .

Lemma 4.12 There exist C1, C2 > 0, independent of h, such that

h2T
µ2
∥∥curl (σd

h

)∥∥2
0,T

≤ C1 ‖σ − σh‖20,T ∀T ∈ Th . (4.27)

and
he
µ2
∥∥[(σd

h

)
sT
]∥∥2

0,e
≤ C2 ‖σ − σh‖20,ωe

∀ e ∈ Eh(Ω). (4.28)

Proof. Applying Lemmas 4.10 and 4.11 to ρh := σd
h and ρ := σd = µ∇u, and then using the

continuity of τ → τ d, we obtain (4.25) and (4.26), respectively.
2

The following three lemmas apply Lemmas 4.8 and 4.9 to bound other terms defining θ2T .

Lemma 4.13 There exists C3 > 0, independent of h, such that

h2T

∥∥∥∥ 1µσd
h −∇uh

∥∥∥∥2
0,T

≤ C3

{
‖u− uh‖20,T + h2T ‖σ − σh‖20,T

}
∀T ∈ Th . (4.29)

18



Proof. It is similar to the proof of [25, Lemma 4.13], which is a slight modification of the proof of
[13, Lemma 6.3] (see also [20, Lemma 5.5]). In fact, given T ∈ Th we denote γT := 1

µσ
d
h −∇uh in T .

Then, applying the right hand side of (4.21), using that ∇u = 1
µσ

d in Ω, and integrating by parts, we
find that

‖γT ‖20,T ≤ c1 ‖ψ1/2
T γT ‖20,T = c1

∫
T
ψT γT :

(
1

µ
σd
h −∇uh

)
= c1

∫
T
ψT γT :

{
∇(u− uh) +

1

µ

(
σd
h − σd

)}
= − c1

{∫
T
div(ψT γT ) · (u− uh) +

1

µ

∫
T
ψT γT :

(
σd − σd

h

)}
.

Then, applying the Cauchy-Schwarz inequality, the inverse estimate (4.24), the left hand side of (4.21),
and the continuity of τ → τ d, we get

‖γT ‖20,T ≤ C
{
h−1
T ‖u− uh‖0,T + ‖σ − σh‖0,T

}
‖γT ‖0,T ,

which yields

‖γT ‖0,T ≤ C
{
h−1
T ‖u− uh‖0,T + ‖σ − σh‖0,T

}
.

This inequality implies (4.29) and completes the proof.
2

Lemma 4.14 There exists C4 > 0, independent of h, such that for each e ∈ Eh(ΓD) there holds

he
µ2

‖(σd
h) s‖20,e ≤ C4 ‖σ − σh‖20,Te

. (4.30)

where Te is the triangle of Th having e as an edge.

Proof. We proceed as in the proof of [25, Lemma 4.15]. In fact, given e ∈ Eh(ΓD) we denote
γe := (σd

h) s on e. Since u = 0 on ΓD we observe that (σd) s = µ(∇u) s = 0 on ΓD, and hence
(σd

h) s =
(
σd
h − σd

)
s on e. Then, applying (4.22) and the extension operator L : C(e) → C(T ), we

obtain that

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe γe · (σd

h s) = c2

∫
∂Te

ψe L(γe) ·
{(

σd
h − σd

)
s
}
.

Now, integrating by parts, and using that curl(σd) = curl(µ∇u) = 0 in Ω, we find that∫
∂Te

ψe L(γe) ·
{(

σd
h − σd

)
s
}

= −
∫
Te

curl(ψe L(γe)) :
(
σd
h − σd

)
+

∫
Te

ψe L(γe) · curl
(
σd
h

)
.

Then, applying the Cauchy-Schwarz inequality, the inverse estimate (4.24), the continuity of τ → τ d,
and noting, thanks to the fact that 0 ≤ ψe ≤ 1 and the right-hand side of (4.23), that

‖ψeL(γe)‖0,Te ≤ ‖ψ1/2
e L(γe)‖0,Te ≤ c4 h

1/2
e ‖γe‖0,e ,

we deduce that

‖γe‖20,e ≤ C
{
h−1
Te

‖σ − σh‖0,Te +
∥∥curl (σd

h

)∥∥
0,Te

}
h1/2e ‖γe‖0,e ,
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which, using that he ≤ hTe , yields

he
µ2

‖γe‖20,e ≤ C

{
‖σ − σh‖20,Te

+
h2Te

µ2
∥∥curl (σd

h

)∥∥2
0,Te

}
.

This inequality and (4.27) imply (4.30), which completes the proof.
2

Lemma 4.15 There exists C6 > 0, independent of h, such that

∑
e∈Eh(ΓN )

he

∥∥∥∥( 1µσd
h

)
s+

dξh
ds

∥∥∥∥2
0,e

≤ C6

 ∑
e∈Eh(ΓN )

‖σ − σh‖20,Te
+ ‖ξ − ξh‖20;1/2,ΓN

 , (4.31)

where, given e ∈ Eh(ΓN ), Te is the triangle of Th having e as edge.

Proof. We adapt the proof of [23, Lemma 20]. In fact, given e ∈ Eh(ΓN ) we let γe :=
( 1
µ
σd
h

)
s+

dξh
ds

on e. Then, thanks to (4.22) and the extension operator L : C(e) → C(T ), we obtain that

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe γe ·

{( 1
µ
σd
h

)
s+

dξh
ds

}
=

c2
µ

∫
∂Te

ψe L(γe) · (σd
h) s+ c2

∫
e
ψe γe ·

dξh
ds

.

(4.32)

Next, integrating by parts and using that σd = µ∇u in Ω, we find that∫
∂Te

ψe L(γe) · (σd
h) s = −

∫
Te

curl(ψe L(γe)) : σ
d
h +

∫
Te

ψe L(γe) · curl(σd
h) , (4.33)

and ∫
Te

curl(ψe L(γe)) : σ
d
h =

∫
Te

curl(ψe L(γe)) :
(
σd
h − σd

)
+

∫
Te

curl(ψe L(γe)) : µ∇u

=

∫
Te

curl(ψe L(γe)) :
(
σd
h − σd

)
− µ

〈
du

ds
, ψe L(γe)

〉
∂Te

,

(4.34)

where 〈·, ·〉∂Te denotes the duality pairing between H−1/2(∂Te) and H1/2(∂Te). In this way, replacing
(4.34) into (4.33), and then (4.33) into (4.32), and using that u = − ξ on ΓN , we arrive at

‖γe‖20,e ≤ C

{
−
∫
Te

curl(ψe L(γe)) :
(
σd
h − σd

)
+

∫
Te

ψe L(γe) · curl(σd
h) −

〈
d

ds
(ξ − ξh), ψe L(γe)

〉
e

}
,

(4.35)

where 〈·, ·〉e denotes the duality pairing between (H
1/2
00 (e))′ and H

1/2
00 (e). Here, as usual, H

1/2
00 (e)

stands for the space of traces on e of those elements in H1(Te) whose traces vanish on ∂Te \ e.

Now, since ψe γe ∈ H
1/2
00 (e) for each e ∈ Eh(ΓN ), we can write∑

e∈Eh(ΓN )

he

〈
d

ds
(ξ − ξh), ψe γe

〉
e

=

〈
d

ds
(ξ − ξh),γ

〉
ΓN

,
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where γ is the piecewise polynomial defined by γ|e := he ψe γe on each e ∈ Eh(ΓN ). Then, applying

the boundedness of the tangential derivative
d

ds
: H

1/2
00 (ΓN ) → H

−1/2
00 (ΓN ), employing the inverse

estimate ‖γ‖0;1/2,ΓN
≤ c h−1/2 ‖γ‖0,ΓN

, and using that he ≤ h and 0 ≤ ψe ≤ 1, we deduce from (4.28)
that ∑

e∈Eh(ΓN )

he

〈
d

ds
(ξ − ξh), ψe γe

〉
e

≤ C h−1/2 ‖ξ − ξh‖0;1/2,ΓN
‖γ‖0,ΓN

≤ C ‖ξ − ξh‖0;1/2,ΓN

 ∑
e∈Eh(ΓN )

he ‖γe‖20,e


1/2

.

(4.36)

On the other hand, proceeding as in previous proofs, applying Cauchy-Schwarz’s inequality, the inverse
estimate (4.24), the fact that he ≤ hT , the inequality

‖ψe L(γe)‖0,Te ≤ c h1/2e ‖γe‖0,e ,

and the upper bound for
h2Te

µ2
‖curl(σd

h)‖20,Te
(cf. Lemma 4.12), we are able to show that

∑
e∈Eh(ΓN )

he

∫
Te

{
− curl(ψe L(γe)) :

(
σd
h − σd

)
+ ψe L(γe) · curl(σd

h)
}

≤ C

 ∑
e∈Eh(ΓN )

‖σ − σh‖0,Te


1/2 ∑

e∈Eh(ΓN )

he ‖γe‖20,e


1/2

.

(4.37)

Finally, it is easy to see that (4.35), (4.36), and (4.37) lead to (4.31), thus completing the proof.
2

It is important to remark that the estimate provided by Lemma 4.15 is the only nonlocal bound of
the present efficiency analysis. However, under an additional regularity assumption on ξ we are able
to prove the following local bound.

Lemma 4.16 Assume that ξ|e ∈ H1(e) for each e ∈ Eh(ΓN ). Then there exists C > 0, independent
of h, such that for each e ∈ Eh(ΓN ) there holds

he

∥∥∥∥( 1µσd
h

)
s+

dξh
ds

∥∥∥∥2
0,e

≤ C

{
‖σ − σh‖20,Te

+ he

∥∥∥∥ dds(ξ − ξh)

∥∥∥∥2
0,e

}
,

where Te is the triangle of Th having e as an edge.

Proof. We adapt the proof of [23, Lemma 21]. To this end, it suffices to reconsider the local estimate
(4.35), and observe that, as a consequence of the Cauchy-Schwarz inequality, the last term of it is

bounded by

∥∥∥∥ dds(ξ − ξh)

∥∥∥∥
0,e

‖γe‖0,e. The rest proceeds exactly as in the last part of the proof of

Lemma 4.15. We omit further details.
2

Next, in order to bound the boundary terms given by he ‖ξh + uh‖20,e, e ∈ Eh(ΓN ), we need to
recall a discrete trace inequality. In fact, as established by [1, Theorem 3.10] (see also [2, eq. (2.4)]),
there exists c > 0, depending only on the shape regularity of the triangulations, such that for each
T ∈ Th and e ∈ E(T ), there holds

‖v‖20,e ≤ c
{
h−1
e ‖v‖20,T + he |v|21,T

}
∀ v ∈ H1(T ) . (4.38)
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Lemma 4.17 There exists C7 > 0, independent of h, such that for each e ∈ Eh(ΓN ) there holds

he ‖ξh + uh‖20,e ≤ C7

{
he ‖ξ − ξh‖20,e + ‖u− uh‖20,Te

+ h2Te
‖σ − σh‖20,Te

}
, (4.39)

where Te is the triangle having e as an edge.

Proof. We adapt the proof of [23, Lemma 22]. Applying the triangle inequality, the fact that ξ = −u
on ΓN , and the discrete trace inequality (4.38), we easily obtain that for each e ∈ Eh(ΓN ) there holds

he ‖ξh + uh‖20,e ≤ 2
{
he ‖ξ − ξh‖20,e + he ‖uh − u‖20,e

}
≤ C

{
he ‖ξ − ξh‖20,e + ‖u− uh‖20,Te

+ h2Te
|u− uh|21,Te

}
.

(4.40)

Now, recalling that
1

µ
σd = ∇u, and using the continuity of τ → τ d, we deduce that

h2Te
|u− uh|21,Te

≤ C

{
h2Te

‖σ − σh‖20,Te
+ h2Te

∥∥∥ 1
µ
σd
h −∇uh

∥∥∥2
0,Te

}
. (4.41)

In this way (4.41), (4.40), and the upper bound for h2Te

∥∥∥ 1
µ
σd
h − ∇uh

∥∥∥2
0,Te

(cf. Lemma 4.13) yield

(4.39), which finishes the proof.
2

We end the present efficiency analysis with the upper bound for he ‖g − σh ν‖20,e , e ∈ Eh(ΓN ).

Lemma 4.18 Assume that g is piecewise polynomial. Then there exists C8 > 0, independent of h,
such that for each e ∈ Eh(ΓN ) there holds

he ‖g − σh ν‖20,e ≤ C8

{
‖σ − σh‖20,Te

+ h2Te
‖div(σ − σh)‖20,Te

}
, (4.42)

where Te is the triangle having e as an edge.

Proof. We adapt the proof of [23, Lemma 18]. In fact, given e ∈ Eh(ΓN ), we let γe := g−σh ν on e.
Then, employing (4.22), the fact that g = σ ν on ΓN , and the extension operator L : C(e) → C(T ),
and then integrating by parts in Te, we deduce that

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe γe · (σ − σh)ν = c2

∫
∂Te

ψe L(γe) · (σ − σh)ν

= c2

∫
Te

(
∇(ψe L(γe)) : (σ − σh) + ψe L(γe) · div(σ − σh)

)
.

Next, applying Cauchy-Schwarz inequality, the fact that 0 ≤ ψe ≤ 1, and the inverse estimate (4.24),
and using from (4.23) that

‖ψe L(γe)‖0,Te ≤ ‖ψ1/2
e L(γe)‖0,Te ≤ c h1/2e ‖γe‖0,e ,

we find that

‖γe‖20,e ≤ C
{
h−1
T ‖σ − σh‖0,Te + ‖div(σ − σh)‖0,Te

}
‖ψe L(γe)‖0,Te

≤ C h1/2e

{
h−1
Te

‖σ − σh‖0,Te + ‖div(σ − σh)‖0,Te

}
‖γe‖0,e ,
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which yields

he ‖γe‖20,e ≤ C
{
‖σ − σh‖20,Te

+ h2Te
‖div(σ − σh)‖20,Te

}
. (4.43)

Hence, (4.43) implies (4.42), which completes the proof.
2

If g were not piecewise polynomial but sufficiently smooth, then higher order terms given by the
errors arising from suitable polynomial approximations would appear in (4.42). This explains the
eventual expression h.o.t. in (4.4).

Consequently, the efficiency of θ follows straightforwardly from the estimate (4.20), together with
Lemmas 4.13 throughout 4.18, after summing up over T ∈ Th.

5 Numerical results

In this section, we present some numerical results showing the good performance of the mixed finite
element scheme (3.5), confirming the reliability and efficiency of the a posteriori error estimator θ
derived in Section 4, and showing the behaviour of the associated adaptive algorithm. In all the
computations we consider the specific finite element subspaces Hh and Qh given by (3.1) (with k = 0)
and (3.4), respectively. We begin by introducing additional notations. Indeed, in what follows N
stands for the total number of degrees of freedom (unknowns) of (3.5), which can be proved to behave
asymptotically as 3 times the number of elements of each triangulation. Also, the individual and total
errors are given by

e(σ) := ‖σ − σh‖div;Ω , e(ξ) := ‖ξ − ξh‖0;1/2,ΓN
, and e(σ, ξ) :=

{
[e(σ)]2 + [e(ξ)]2

}1/2
,

whereas the effectivity index with respect to θ is defined by

eff(θ) := e(σ, ξ)/θ .

Then, we define the experimental rates of convergence

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(ξ) :=

log(e(ξ)/e′(ξ))

log(h/h′)
, and r(σ, ξ) :=

log(e(σ, ξ)/e′(σ, ξ))

log(h/h′)
,

where e and e′ denote the corresponding errors at two consecutive triangulations with mesh sizes h
and h′, respectively. Nevertheless, when the adaptive algorithm is applied (see details below), the
expression log(h/h′) appearing in the computation of the above rates is replaced by − 1

2 log(N/N ′),
where N and N ′ denote the corresponding degrees of freedom of each triangulation. In addition,
we also denote by e(p), e(u), r(p), and r(u) the corresponding errors and experimental rates of
convergence for p and u when they are approximated by the postprocessing formulae (3.6) and (4.2).

The examples to be considered in this section are described next. Example 1 is employed to
illustrate the performance of the mixed finite element scheme (3.5) and to confirm the reliability and
efficiency of the a posteriori error estimator θ. Then, Examples 2 and 3 are utilized to show the
behaviour of the associated adaptive algorithm, which applies the following procedure from [35]:

1) Start with a coarse mesh Th.

2) Solve the discrete problem (3.5) for the actual mesh Th.

3) Compute θT (cf. (4.1)) for each triangle T ∈ Th.
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4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥ 1

2
max

{
θT : T ∈ Th

}
6) Define resulting mesh as actual mesh Th and go to step 2.

In Example 1 we consider Ω =]0, 1[2, ΓD = {(0, x2) ∈ R2 : 0 ≤ x2 ≤ 1}, ΓN = Γ \ Γ̄D, µ = 1,
α = 1, and choose the data f and g so that the exact solution is given for each x := (x1, x2)

t ∈ Ω by

u(x) =

 sin2(4x1) cos(4x2) sin(4x2)

sin(4x1) cos
2(4x2) cos(4x1)


and

p(x) = cos(4x1) cos(4x2) exp(−x1) .

In Example 2 we consider Ω =]−1, 1[2\[0, 1]2, ΓD = {(−1, x2) ∈ R2 : −1 ≤ x2 ≤ 1}, ΓN = Γ\Γ̄D,
µ = 1, α = 1, and choose f and g so that the exact solution is given for each x := (x1, x2)

t ∈ Ω by

u(x) = curl
(
(x1 + 1)2

√
(x1 − 0.1)2 + (x2 − 0.1)2

)
and

p(x) =
1

x2 + 1.1
.

Note that Ω is a L-shaped domain and that u and p are singular at (0.1, 0.1) and along the line
x2 = − 1.1, respectively. Hence, we should expect regions of high gradients around the origin, which
is the middle corner of the L, and along the line x2 = −1.0.

Finally, in Example 3 we consider Ω =] − 1, 1[2\
(
[−1,−0.25] × [−1, 0.5] ∪ [0.25, 1] × [−1, 0.5]

)
,

ΓD = {(x1, 1) ∈ R2 : −1 ≤ x1 ≤ 1}, ΓN = Γ \ Γ̄D, µ = 1, α = 10, and choose the data f and g so
that the exact solution is given for each x := (x1, x2)

t ∈ Ω by

u(x) = curl
(
(x2 − 1)2

{√
(x1 + 0.3)2 + (x2 − 0.45)2 +

√
(x1 − 0.3)2 + (x2 − 0.45)2

})
and

p(x) =
1

x2 + 1.1
.

Note that Ω is a T -shaped domain and that u and p are singular at (−0.3, 0.45) and (0.3, 0.45), and
along the line x2 = − 1.1, respectively. Hence, similarly to Example 2, we should expect regions of
high gradients around (−0.25, 0.5) and (0.25, 0.5), which are the middle corners of the T , and along
the line x2 = −1.0.

In Tables 5.1 and 5.2, we summarize the convergence history of the mixed finite element scheme
(3.5) as applied to Example 1, for a sequence of quasi-uniform triangulations of the domain. We notice
there that the rate of convergence O(h) predicted by Theorem 3.2 (when s = 1) is attained by all the
unknowns, including the postprocessed u and p (cf. Table 5.2). In particular, as observed in the sixth
column of Table 5.1, the convergence of ξh is a bit faster than expected, which could correspond to
either a superconvergence phenomenon or a special feature of this example. We also remark in this
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case the good behaviour of the a posteriori error estimator θ. Indeed, we see in Table 5.1 that the
effectivity index eff(θ) remains always in a neighborhood of 0.88, which illustrates the reliability and
efficiency result provided by Theorem 4.1.

Next, in Tables 5.3, 5.4, 5.5, and 5.6, we provide the convergence history of the uniform and
adaptive schemes as applied to Examples 2 and 3. We observe here, as expected, that the errors of the
adaptive methods decrease faster than those obtained by the quasi-uniform ones. This fact is better
illustrated in Figures 5.1 and 5.3 where we display the total errors e(σ, ξ) vs. the degrees of freedom
N for both refinements. Note that the quasi-uniform curves of these figures consider additional meshes
that are not included in Tables 5.3 and 5.5. In addition, the effectivity indexes remain again bounded
from above and below, which confirms the reliability and efficiency of θ for the associated adaptive
algorithm as well. Some intermediate meshes obtained with this procedure are displayed in Figures 5.2
and 5.4. It is important to notice here that the adapted meshes concentrate the refinements around
the origin and the line x2 = −1 in Example 2, and around the points (−0.25, 0.5) and (0.25, 0.5) and
the line x2 = −1 in Example 3, which says that the method is in fact able to recognize the regions with
high gradients of the solutions. Finally, in order to illustrate the accurateness of the adaptive scheme,
in Figures 5.5, 5.6, 5.7, and 5.8, we display some components of the solutions for both examples.
The approximate ones are placed at the left side for the field unknowns and identified by red bullets
for both components of the boundary unknown ξ, whereas the exact ones are placed at the right
side and identified by continuous lines, respectively. In turn, the components of ξ are depicted along
straight lines beginning at the points (−1,−1) and (−1, 1) for the L-shaped and T -shaped domains,
respectively, and then continuing counterclockwise.

We conclude this paper by emphasizing that we have provided enough support to consider the
mixed finite element scheme (3.5) and its associated adaptive algorithm, as valid and competitive
alternatives to solve the Brinkman problem in porous media flow.

N h e(σ) r(σ) e(ξ) r(ξ) e(σ, ξ) r(σ, ξ) eff(θ)

1650 1/16 4.183E−00 − 1.744E−01 − 4.186E−00 − 0.8845
2542 1/20 3.353E−00 0.992 1.216E−01 1.607 3.355E−00 0.992 0.8838
3626 1/24 2.798E−00 0.994 9.103E−02 1.581 2.799E−00 0.995 0.8833
4902 1/28 2.400E−00 0.996 7.148E−02 1.564 2.401E−00 0.996 0.8830
6370 1/32 2.101E−00 0.997 5.807E−02 1.553 2.101E−00 0.997 0.8828
8030 1/36 1.868E−00 0.998 4.840E−02 1.545 1.868E−00 0.998 0.8827

14162 1/48 1.402E−00 0.998 3.112E−02 1.533 1.402E−00 0.999 0.8825
25026 1/64 1.051E−00 0.999 2.008E−02 1.521 1.052E−00 0.999 0.8823
55970 1/96 7.011E−01 1.000 1.086E−02 1.513 7.012E−01 1.000 0.8822
99202 1/128 5.259E−01 1.000 7.035E−03 1.509 5.259E−01 1.000 0.8821
154722 1/160 4.207E−01 1.000 5.026E−03 1.507 4.208E−01 1.000 0.8821
302626 1/224 3.005E−01 1.000 3.029E−03 1.505 3.005E−01 1.000 0.8820
616642 1/320 2.104E−01 1.000 1.772E−03 1.503 2.104E−01 1.000 0.8820
887426 1/384 1.753E−01 1.000 1.347E−03 1.503 1.753E−01 1.000 0.8820

Table 5.1: Example 1, quasi–uniform scheme
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N h e(u) r(u) e(p) r(p)

1650 1/16 4.161E−00 − 1.524E−01 −
2542 1/20 3.336E−00 0.991 1.205E−01 1.046
3626 1/24 2.783E−00 0.994 9.978E−02 1.030
4902 1/28 2.388E−00 0.996 8.523E−02 1.021
6370 1/32 2.090E−00 0.997 7.441E−02 1.015
8030 1/36 1.858E−00 0.997 6.604E−02 1.012

14162 1/48 1.395E−00 0.998 4.942E−02 1.007
25026 1/64 1.046E−00 0.999 3.702E−02 1.004
55970 1/96 6.976E−01 1.000 2.466E−02 1.002
99202 1/128 5.233E−01 1.000 1.849E−02 1.001
154722 1/160 4.186E−01 1.000 1.479E−02 1.001
302626 1/224 2.990E−01 1.000 1.056E−02 1.000
616642 1/320 2.093E−01 1.000 7.393E−03 1.000
887426 1/384 1.744E−01 1.000 6.160E−03 1.000

Table 5.2: Example 1, quasi–uniform scheme for the postprocessed unknowns
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Figure 5.2: Example 2, adapted meshes with 460, 2218, 8136, and 30258 degrees of freedom
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N h e(σ) r(σ) e(ξ) r(ξ) e(σ, ξ) r(σ, ξ) eff(θ)

70 1/1 9.848E−00 − 5.408E−00 − 1.124E+01 − 0.4445
212 1/3 8.484E−00 0.151 1.336E−00 2.052 8.588E−00 0.256 0.6332
558 1/5 7.047E−00 0.512 8.293E−01 1.038 7.095E−00 0.520 0.7433
938 1/7 6.096E−00 0.553 5.893E−01 1.194 6.124E−00 0.560 0.7781
1504 1/9 5.309E−00 0.546 4.855E−01 0.877 5.331E−00 0.549 0.8078
2184 1/11 4.475E−00 0.801 3.926E−01 1.597 4.492E−00 0.808 0.8105
3112 1/13 4.086E−00 1.261 3.711E−01 0.948 4.103E−00 1.258 0.8372
4170 1/15 3.888E−00 0.876 3.069E−01 1.176 3.900E−00 0.878 0.8601
5378 1/17 3.409E−00 1.341 2.863E−01 1.112 3.421E−00 1.340 0.8553
7314 1/20 3.035E−00 0.825 2.370E−01 0.702 3.044E−00 0.824 0.8643

11544 1/25 2.555E−00 0.765 1.921E−01 0.722 2.562E−00 0.765 0.8731
22314 1/35 1.882E−00 0.779 1.175E−01 1.585 1.885E−00 0.783 0.8778
45802 1/50 1.314E−00 0.854 7.377E−02 1.426 1.316E−00 0.856 0.8763
72096 1/63 1.022E−00 1.439 5.043E−02 1.683 1.024E−00 1.439 0.8732
116322 1/80 8.207E−01 1.045 3.397E−02 1.699 8.214E−01 1.046 0.8774
182008 1/100 6.501E−01 0.986 2.361E−02 1.632 6.505E−01 0.987 0.8760
357036 1/140 4.700E−01 0.962 1.386E−02 1.514 4.702E−01 0.963 0.8788
588836 1/180 3.602E−01 0.878 9.344E−03 1.498 3.603E−01 0.878 0.8772
880506 1/220 2.959E−01 0.977 6.851E−03 1.513 2.960E−01 0.978 0.8782

Table 5.5: Example 3, quasi–uniform scheme

N h e(σ) r(σ) e(ξ) r(ξ) e(σ, ξ) r(σ, ξ) eff(θ)

70 1.000 9.848E−00 − 5.408E−00 − 1.124E+01 − 0.4445
174 0.750 8.525E−00 0.317 1.330E−00 3.081 8.628E−00 0.580 0.6045
372 0.750 7.065E−00 0.494 1.134E−00 0.420 7.155E−00 0.493 0.6693
768 0.500 4.984E−00 0.962 6.372E−01 1.589 5.025E−00 0.975 0.6757
1300 0.375 3.329E−00 1.534 4.396E−01 1.411 3.358E−00 1.532 0.5911
2638 0.250 2.487E−00 0.824 2.396E−01 1.716 2.499E−00 0.835 0.6444
4954 0.188 1.675E−00 1.254 1.474E−01 1.541 1.682E−00 1.256 0.6039

10490 0.125 1.252E−00 0.777 7.860E−02 1.676 1.254E−00 0.782 0.6508
19024 0.094 8.587E−01 1.266 5.092E−02 1.458 8.602E−01 1.267 0.6039
43290 0.063 5.919E−01 0.905 2.562E−02 1.671 5.925E−01 0.907 0.6330
78288 0.047 4.254E−01 1.115 1.779E−02 1.231 4.258E−01 1.115 0.6030
170994 0.031 3.000E−01 0.894 9.242E−03 1.677 3.002E−01 0.895 0.6364
300062 0.023 2.170E−01 1.152 6.305E−03 1.360 2.171E−01 1.152 0.6029
656274 0.016 1.530E−01 0.893 3.340E−03 1.623 1.531E−01 0.893 0.6339

1178168 0.012 1.097E−01 1.139 2.242E−03 1.363 1.097E−01 1.139 0.6030

Table 5.6: Example 3, adaptive scheme
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Figure 5.4: Example 3, adapted meshes with 1300, 4954, 10490, and 19024 degrees of freedom

Figure 5.5: Example 2, approximate and exact σ21 and σ22 (N = 125774) for adaptive scheme
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Figure 5.6: Example 2, approximate and exact ξ and u2 (N = 3656, 125774) for adaptive scheme

Figure 5.7: Example 3, approximate and exact σ11 and σ21 (N = 170994) for adaptive scheme
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Figure 5.8: Example 3, approximate and exact ξ and u2 (N = 10490, 170994) for adaptive scheme
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