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This work proposes and analyzes a new Local Projection Stabilized finite element method (LPS for short)
for the non-linear incompressible Navier–Stokes equations. Stokes problems defined element–wisely
drive the construction of the stabilized terms which make the present method stable for continuos velocity
and (dis)continuos pressure finite element pairs P1×Pl , l = 0,1, in two- and three -dimensions. Existence
and uniqueness of a discrete solution and a non–singular branch of solutions are proved under standard
assumptions. Also, we establish that the LPS method achieves optimal error estimates in the natural
norms. Numerics assess the theoretical results and validate the LPS method in the three-dimensional
case.
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1. Introduction

Stabilized finite element methods have been used extensively to solve the incompressible Navier–Stokes
equations since the seminal paper Brooks & Hughes (1982), followed by the works Franca & Frey
(1992) and Lube & Tobiska (1990). Introduced as a strategy to circumvent (unstable) mixed finite
elements, these methods make the equal order and the simplest elements (i.e., the space pair P1×P0)
inf–sup stable (see Ern & Guermond (2004) and Girault & Raviart (1986) for details) by adding extra
variational terms to the classical Galerkin method. Originally, stabilized methods add residual local
terms to the Galerkin formulation preserving consistency. Classical examples are the SUPG, GLS and
SDFEM methods Franca et al. (1992); Baiocchi et al. (1993); Tobiska & Verfürth (1996), just to cite a
few among the vast literature on the subject.
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Recently, a family of non-residual stabilized finite element method have become popular as they add
fewer (symmetric) terms to the formulation when compared to their residual counterpart. Such schemes,
originally proposed in Becker & Braack (2001) for the Stokes problem (see also Codina (2008), Burman
et al. (2006), Braack & Lube (2009), Ganesan & Tobiska (2010) for alternative versions) and known
as Local Projection Stabilized (LPS) methods, may be seen as a “term-by-term” stabilized method for
which the extra terms are based on the projection onto a polynomial space defined with respect to a
coarser triangulation through a de-refinement of the original mesh. Hence, in general, such methods
demand a special data structure to be implemented. Meanwhile, the so-called Residual Local Projec-
tion (RELP) stabilized methods Barrenechea & Valentin (2010a) reincorporate the residual idea into
the construction of stabilized methods, but now merged with the fundamental idea behind the LPS
methodology. This is achieved through interpolation operators (fluctuation operators) defined on finite
dimensional spaces generated by the solution of local problems (see Barrenechea & Valentin (2010b)
for this idea applied to the Oseen equation). From this point of view, the RELP method resembles
to the Residual-Free-Bubble (RFB) approach Brezzi et al. (1998) which introduced local driven prob-
lems to build stabilized terms without priori knowledge on their structures. In Araya et al. (2012), the
original RELP method given in Barrenechea & Valentin (2010b) was extended to the incompressible
Navier–Stokes equations, and proved to be well-posed and optimal convergent.

In this work, we propose and analyze a new LPS method for the incompressible Navier-Stokes equa-
tions built up on the RELP method given in Araya et al. (2012). This leads to a much simpler method (in
terms of number of stabilized terms) than the original RELP method. Here, we focus on the piecewise-
linear continuos space for the velocity variable, and the piecewise constant or linear (dis)continuos
spaces for the pressure, as those choices are the most common in practice. Also, these choices make
closed formula available to approximating the second level problems without undermining theoretical
results. As a result, the proposed stabilized method may be implemented easily in standard finite element
codes.

In regard to theoretical results, this work establishes well–posedness and an optimal convergence
result in the natural norms for the new LPS method within the framework presented in Araya et al.
(2012) and Tobiska & Verfürth (1996). Specifically, the stability and convergence analysis rely on the
fixed point theory proposed in Brezzi et al. (1980); Girault & Raviart (1986). This point of view has
also been adopted in Tobiska & Verfürth (1996) to analyze the stabilized method originally proposed
in Franca & Frey (1992) (see also Codina & Blasco (2000) for a related result). Due to the particular
structure of the method, the proof requests the construction of a new stabilized finite element method
for the Stokes equation, which is also analyzed. It is worth mentioning that a detailed analysis for the
three-dimensional case is performed under standard conditions. This differs from Araya et al. (2012).
Also interesting, we show that the underlined lack of consistency of the LPS method (which is absent in
Araya et al. (2012)) remains controlled, i.e., it stays at order of the leading errors. The stated theoretical
results are assessed through a large variety of three-dimensional computational benchmarks.

The paper is outlined as follows: In Section 2 we present some notations, definitions and technical
results which will be used throughout this work. The LPS method is introduced in Section 3 as well
as existence and uniqueness results. Section 4 is devoted to the a priori error analysis and numerical
validations are presented in Section 5. Conclusions are given in Section 6.
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2. Notations and preliminary results

Let Ω ⊆Rd , (d = 2 or 3) be a polygonal (polyhedral) open domain. The steady incompressible Navier–
Stokes equations consists of finding the velocity and the pressure (uuu, p̃) such that

−ν ∆uuu + (∇uuu)uuu + ∇ p̃ = f̃ff , ∇·uuu = 0 in Ω , (2.1)
uuu = 000 on ∂Ω ,

where ν ∈ R+ is the fluid viscosity and f̃ff ∈ L2(Ω)d . Adopting standard notations for Sobolev spaces,
the weak form associated to (2.1) reads: Find (uuu, p̃) ∈ HHH×Q :=H1

0 (Ω)d×L2
0(Ω) such that:

ν (∇uuu,∇vvv)+((∇uuu)uuu,vvv)− (p̃,∇ · vvv)+(q,∇ ·uuu) = ( f̃ff ,vvv) for all (vvv,q) ∈ HHH×Q,

where (·, ·) stands for the L2(Ω)-inner product (or L2(Ω)d).
Let D be an open subset of Ω , we denote by ‖ · ‖m,D the norm in Hm(D), and by ‖ · ‖m,q,D the norm

in W m,q(D) with m> 0 and 16 q6∞. We denote, as usual, H−1(Ω) the dual space of H1
0 (Ω) equipped

with the dual norm ‖ · ‖−1,Ω and the duality product 〈·, ·〉, and H0(Ω) = L2(Ω) and W 0,q(Ω) = Lq(Ω).
Also, we equip the space HHH×Q with the norm ||| · ||| given as follows

|||(vvv,q)||| :=
{
|vvv|21,Ω +‖q‖2

0,Ω
}1/2

,

and the dual space of HHH×Q (denoted by (HHH×Q)′) with the norm ‖ · ‖(HHH×Q)′ given by

‖(vvv,q)‖(HHH×Q)′ := sup
|||(www,r)|||61

{〈vvv,www〉+(q,r)} .

Let {Th}h>0 be a family of regular triangulations of Ω̄ , built up of triangles (d = 2), or tetrahedra
(d = 3) K with boundary ∂K and characteristic length hK := diam(K). For each triangulation Th, we
define h := max{hK : K ∈ Th}, and denote by Eh the set of internal edges (faces) F of the partition Th,
and hF := diam(F). We denote by nnn the outward normal vector on ∂K; JvK stands for the jump of v
across F . In addition, for K ∈Th and F ∈ Eh, we define the neighborhoods ωK := {K′ ∈Th : K′∩K 6= /0}
and ωF := {K ∈Th : F∩K 6= /0}. Finally, we denote by ΠS, with S⊂Rd , the orthogonal projection onto
the constant space P0(S), i.e., ΠS(q) := (q,1)S

|S| , and by Hm(Th), m > 1 the space of functions in L2(Ω)

whose restriction to each K ∈Th belongs to Hm(K).
We associate to the partition Th the discrete space for the velocity HHHh, composed of vector-valued

piecewise linear continuous functions with zero trace on ∂Ω . To approximate the pressure, we adopt
the discrete space Qh defined as the space of piecewise polynomial functions of degree l, (l = 0,1) with
zero mean value on Ω . In the case l = 1, the space Qh may represent continuous or discontinuous func-
tions.

Next, we equip the dual of the discrete spaces with the following norm

‖(vvv,q)‖(HHHh×Qh)
′ := sup

|||(wwwh,rh)|||61
{〈vvv,wwwh〉+(q,rh)} .

Also, the differential of a mapping F : HHH×Q→HHH×Q with respect to (uuu,q) is denoted by Duuu,pF(vvv,q)∈
L (HHH×Q), where L (HHH×Q) stands for the space of linear mappings acting on elements of HHH×Q with
values in HHH×Q and equipped with the usual norm ‖ · ‖L (HHH×Q).

Now, we recall some classical results which will be needed in the forthcoming analysis sections.
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LEMMA 2.1 There exist positive constants α and β , depending only on Ω , such that for all vvv,www ∈ HHH
and q ∈ Q, it holds

sup
vvv∈HHH\{000}

(q,∇ · vvv)
|vvv|1,Ω

> β ‖q‖0,Ω , (2.2)

((∇uuu)www,vvv) 6 α |uuu|1,Ω |www|1,Ω |vvv|1,Ω . (2.3)

Moreover, for all uuu,vvv,www ∈ HHH, it holds

((∇vvv)www,vvv) = −1
2
(∇ ·www,vvv · vvv). (2.4)

Proof. See Girault & Raviart (1986) and Temam (1995). �
The following inverse inequality estimates hold for the functions in HHHh and Qh.

LEMMA 2.2 There exists a positive constant C, independent of h, such for all vvvh ∈ HHHh and all qh ∈ Qh,
we have

‖vvvh‖l,p,K 6 C h
m−l+d( 1

p− 1
q )

K ‖vvvh‖m,q,K , (2.5)

‖JqhK‖0,F 6 C h−1/2
F ‖qh‖0,ωF , (2.6)

where 06 m6 l and 16 p,q6 ∞.

Proof. See Lemma 1.138 in Ern & Guermond (2004). �
Some properties of the orthogonal projection ΠK , onto the constant space, are summarized in the

following result.

LEMMA 2.3 There exists a constant C > 0, independent of h, such that

‖v−ΠKv‖0,K 6 C hK |v|1,K ∀v ∈ H1(K), (2.7)

‖ΠKv‖0,K 6 ‖v‖0,K ∀v ∈ L2(K). (2.8)

Proof. See Proposition 1.135 in Ern & Guermond (2004). �
Let Ih : HHH ∩H2(Ω)d −→ HHHh be the Lagrange interpolation operator for the velocity, and let Jh :

Q −→ Qh be either a modified Clément operator for the continuous pressures case (l = 1) or the or-
thogonal projection onto the space Qh in the discontinuous pressure case (l = 0,1). These interpolation
operators satisfy the following inequalities (see Clément (1975); Ern & Guermond (2004))

|vvv−Ihvvv|m,K 6 C h2−m
K |vvv|2,K ∀vvv ∈ H2(K)d , (2.9)

|Ihvvv|1,K 6 C‖vvv‖2,K ∀vvv ∈ H2(K)d , (2.10)

‖vvv−Ihvvv‖1,r,K 6 C‖vvv‖1,r,K ∀vvv ∈W 1,r(K)d , ∀r ∈ (2,∞], (2.11)

‖vvv−Ihvvv‖∞,K 6 C‖vvv‖∞,K ∀vvv ∈ C 0(K)d , (2.12)

|q−Jhq|i,K 6 C h j−i
K |q| j,ωK ∀q ∈ H j(ωK), (2.13)

‖q−Jhq‖0,F 6 C h j−1/2
F ‖q‖ j,ωF ∀q ∈ H j(ωF), (2.14)

where 06 m6 2, and 06 i6 1, 16 j 6 l +1 and C is a positive constant independent of h.
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2.1 The scaled model and the Stokes case

The analysis of the well–posedness and the convergence aspects of the present LPS method will rely
on the Brezzi, Rappaz and Raviart theory proposed in Girault & Raviart (1986) within the concept of
branches of non-singular solutions. Thereby, we assume that there exist neighborhoods in which the
solution of the Navier–Stokes equations is unique (i.e., the solutions are isolated). It turns out that
this effectively occurs in many practical problems. Moreover, the solution depends continuously with
respect to the viscosity. As a result, and since the viscosity belongs to a compact set, each solution of
the Navier–Stokes equations generates an isolated branch. Now, it is more convenient to consider the
scaled form of (2.1). To this end, we set p̃ = ν p, f̃ff = ν fff , and λ = ν−1, and rewrite (2.1) as follows

−∆uuuλ +λ (∇uuuλ )uuuλ + ∇pλ = fff , ∇·uuuλ = 0 in Ω , (2.15)
uuuλ = 000 on ∂Ω .

The standard weak formulation of problem (2.15) is given by: Find (uuuλ , pλ ) ∈ HHH×Q such that

(∇uuuλ ,∇vvv)+λ ((∇uuuλ )uuuλ ,vvv)− (pλ ,∇ · vvv)+(q,∇ ·uuuλ ) = ( fff ,vvv) ∀(vvv,q) ∈ HHH×Q . (2.16)

We assume in this work that problem (2.16) admits at least one solution, which is unique provided
λ is sufficiently small. Next, observe that (2.16) can be written in a operator form as follows

F(λ ,uuuλ , pλ ) :=(uuuλ , pλ )+T G(λ ,uuuλ , pλ ) = 000, (2.17)

where G(λ ,uuuλ , pλ ) ∈ HHH ′×Q is given by

〈G(λ ,uuuλ , pλ ),(vvv,q)〉 :=λ ((∇uuuλ )uuuλ ,vvv)− ( fff ,vvv) ∀(vvv,q) ∈ HHH×Q,

and T : HHH ′×Q −→ HHH×Q denotes the Stokes operator, which associates for each (www,r) ∈ HHH ′×Q, the
unique solution (uuu, p) ∈ HHH×Q of

(∇uuu,∇vvv)− (p,∇ · vvv)+(q,∇ ·uuu) = 〈www,vvv〉+(r,q),

for all (vvv,q) ∈ HHH×Q.
Using such a viewpoint, we introduce Th : HHH ′ ×Q −→ HHHh ×Qh the discrete counterpart of the

Stokes operator, which associates to each (www,r)∈HHH ′×Q, the unique solution of the following stabilized
method: Find (uuuh, ph) ∈ HHHh×Qh such that

BBB((uuuh, ph),(vvvh,qh)) = 〈www,vvvh〉+(r,qh) ∀(vvvh,qh) ∈ HHHh×Qh ,

where the bilinear form BBB(·, ·) is given by

BBB((uuuh, ph),(vvvh,qh)) := (∇uuuh,∇vvvh)− (ph,∇ · vvvh)+(qh,∇ ·uuuh)

+ ∑
K∈Th

[(
χh(ph),χh(qh)

)
K +(λ χh(xxx∇ ·uuuh),λ χh(xxx∇ · vvvh))K

]
+ ∑

F∈Eh

hF

12
(JphK,JqhK)F .

Here χh := I−ΠK is the so-called fluctuation operator.
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REMARK 2.1 The discrete Stokes operator Th induces a new stabilized finite element method which, as
far as we are aware, is new in the literature. Thereby, we introduce the following mesh–dependent norm

‖(vvvh,qh)‖2
h := |vvvh|21,Ω + ∑

K∈Th

‖χh(qh)‖2
0,K +‖λ χh(xxx∇·vvvh)‖2

0,K + ∑
F∈Eh

hF

12
‖JqhK‖2

0,F ∀(vvvh,qh)∈HHHh×Qh,

and it is easy to see from the definition of BBB that it holds

BBB((vvvh,qh),(vvvh,qh)) = ‖(vvvh,qh)‖2
h ∀(vvvh,qh) ∈ HHHh×Qh,

and, then, the operator Th is well–defined. 2

Observe that we can easily adapt the analysis presented in Appendix A of Araya et al. (2012) to
prove the following estimates.

LEMMA 2.4 There exist constants C,C′ > 0, independent of h and λ , such that it holds

|||(T −Th)(www,0)|||6C h(1+λ h)2 ‖www‖0,Ω ∀www ∈ L2(Ω)d ,

|||Th(www,q)|||6C′ (1+λ h)2 ‖(www,q)‖(HHHh×Qh)
′ ∀(www,q) ∈ (HHH×Q)′.

3. The Local Projection Stabilized Method

3.1 The method

We introduce a local Stokes problem as a first step toward the full definition of the method. To this
end, we use Araya et al. (2012) to set the following problem: Given vvv ∈ L2(K)d , let (uuuK

e (vvv), pK
e (vvv)) ∈

H1
0 (K)d×L2

0(K) be the solution of the following (local) problem

−ν ∆uuuK
e (vvv)+∇pK

e (vvv) = vvv, ∇ ·uuuK
e (vvv) = 0 in K, (3.1)

uuuK
e (vvv) = 000 on ∂K.

The following result, proved in Lemma 3.2 of Barrenechea & Valentin (2010a), shows that the
operator pK

e is stable in the L2 norm.

LEMMA 3.1 Let vvv ∈ L2(K)d and let pK
e (vvv) the solution of problem (3.1). Then, there exists C > 0,

independent of hK , such that

‖pK
e (vvv)‖0,K 6 C hK ‖vvv‖0,K . (3.2)

Now we are ready to present the LPS method for equation (2.1), which reads: Find (uuuh, p̃h) ∈
HHHh×Qh such that

ν(∇uuuh,∇vvvh)+((∇uuuh)uuuh,vvvh)− (p̃h,∇ · vvvh)+(q̃h,∇ ·uuuh)

+ ∑
K∈Th

αK

ν

[
(χh(p̃h),χh(q̃h))K +(pK

e ((∇uuuh)uuuh), pK
e ((∇vvvh)uuuh))K

]
+ ∑

K∈Th

γK

ν
(χh(xxx ∇ ·uuuh),χh(xxx ∇ · vvvh))K + ∑

F∈Eh

τF (Jp̃hK,Jq̃hK)F = ( f̃ff ,vvvh), (3.3)
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for all (vvvh, q̃h) ∈ HHHh×Qh. The stabilization parameters are given by

αK :=
1

max{1,PeK}
and γK :=

1

max
{

1, PeK
24

} ,
with

PeK :=
|uuuh|KhK

18ν
with |uuuh|K :=

‖uuuh‖0,K

|K| 12
,

and

τF :=


hF

12ν
, if |uuuh|F = 0,

1
2 |uuuh|F

− 1
|uuuh|F (1− exp(PeF))

(
1+

1
PeF

(1− exp(PeF))
)
, otherwise.

Here

PeF :=
|uuuh|F hF

ν
with |uuuh|F :=

‖uuuh‖0,F

h1/2
F

.

The numerical analysis of (3.3) will assume that the scaled version of the Navier-Stokes equations
(2.15) holds. As such, and for sake of clarity, we adapt the LPS method (3.3) accordingly, which now
takes the following form: Find (uuuh,λ , ph,λ ) ∈ HHHh×Qh such that for all (vvvh,qh) ∈ HHHh×Qh,

(∇uuuh,λ ,∇vvvh)+λ ((∇uuuh,λ )uuuh,λ ,vvvh)− (ph,λ ,∇ · vvvh)+(qh,∇ ·uuuh,λ )

+ ∑
K∈Th

αK
[
(χh(ph,λ ),χh(qh))K +(pK

e (λ (∇uuuh,λ )uuuh,λ ), pK
e (λ (∇vvvh)uuuh,λ ))K

]
+ ∑

K∈Th

γK
(
λ χh(xxx∇ ·uuuh,λ ),λ χh(xxx∇ · vvvh)

)
K + ∑

F∈Eh

τ̃F
(
Jph,λ K,JqhK

)
F = ( fff ,vvvh), (3.4)

where τ̃F :=
τF

λ
.

REMARK 3.1 The design of LPS method (3.3) is strongly inspired by the RELP method Araya et al.
(2012), the former excluding the mixed pressure-velocity variational terms which are responsible for
making the RELP method consistent. Another difference resides in the definition of the stabilized
boundary terms which are now simpler (only pressure jumps are involved) than the ones proposed in the
RELP version. Such simplifications may be seen as an example of the “minimal stabilization” concept
developed in Brezzi & Fortin (2001), now used in the context of the incompressible Navier-Stokes
equations. Indeed, we prove in the next sections that the stabilized terms are free to act differently and
independently on the pressure and velocity variables without weakening the theoretical results obtained
for original method (see Araya et al. (2012) for details).

3.2 Existence and uniqueness

Following the ideas presented in Tobiska & Verfürth (1996) and Araya et al. (2012), we start defining
the operator P : HHHh −→ Qh by

∑
K∈Th

αK
(
χh(P(uuuh)),χh(qh)

)
K + ∑

F∈Eh

τ̃F
(
JP(uuuh)K,JqhK

)
F =−(qh,∇ ·uuuh), (3.5)
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for all qh ∈ Qh. Note that the operator P is well defined due to Lax–Milgram’s Lemma with the norm

‖qh‖∗ :=

{
∑

K∈Th

αK‖χh(qh)‖2
0,K + ∑

F∈Eh

τ̃F ‖JqhK‖2
0,F

}1/2

.

Also, we define the mapping N : HHHh −→ HHHh by

(N (uuuh),vvvh) := (∇uuuh,∇vvvh)+(λ (∇uuuh)uuuh,vvvh)− (P(uuuh),∇ · vvvh)− ( fff ,vvvh)

+ ∑
K∈Th

αK
(
λ pK

e ((∇uuuh)uuuh),λ pK
e ((∇vvvh)uuuh)

)
K

+ ∑
K∈Th

γK (λ χh(xxx∇ ·uuuh),λ χh(xxx∇ · vvvh))K ,

for all uuuh,vvvh ∈ HHHh. The following result provides a characterization of the solution of (3.4) in terms of
the mappings P and N .

LEMMA 3.2 The pair (uuuh,λ , ph,λ ) ∈ HHHh×Qh is a solution of problem (3.4) if and only if N (uuuh,λ ) = 000
and ph,λ = P(uuuh,λ ).

Proof. For details see Lemma 3.5 in Araya et al. (2012). �
Next, we establish a sufficient condition assuring the existence of a discrete solution for (3.4).

THEOREM 3.1 There is a positive constant C̃, independent of λ and h, such that if

λ h1/2 ‖ fff‖−1,Ω 6 C̃, (3.6)

then problem (3.4) admits at least one solution (uuuh,λ , ph,λ ) ∈ HHHh×Qh.

Proof. Let uuuh ∈ HHHh, with |uuuh|1,Ω = R, with R a positive constant to be fixed latter. In the sequel, we
will use the following notation

x :=

{
∑

K∈Th

αK‖pK
e (λ (∇uuuh)uuuh)‖2

0,K

}1/2

, y :=

{
∑

F∈Eh

τ̃F ‖JP(uuuh)K‖2
0,F

}1/2

,

z :=‖ fff‖−1,Ω , w :=

{
∑

K∈Th

γK‖λ χh(xxx∇ ·uuuh)‖2
0,K

}1/2

, t :=

{
∑

K∈Th

αK‖χh(P(uuuh))‖2
0,K

}1/2

.

Taking qh = P(uuuh) in (3.5) we get

−(P(uuuh),∇ ·uuuh) = ∑
K∈Th

αK‖χh(P(uuuh))‖2
0,K + ∑

F∈Eh

τ̃F‖JP(uuuh)K‖2
0,F .

Using the above identity, Cauchy-Schwarz’s inequality and (2.4), it holds

(N (uuuh),uuuh) = |uuuh|21,Ω +λ ((∇uuuh)uuuh,uuuh)− ( fff ,uuuh)+ ∑
K∈Th

αK‖χh(P(uuuh))‖2
0,K

+ ∑
F∈Eh

τ̃F‖JP(uuuh)K‖2
0,F + ∑

K∈Th

αK‖λ pK
e ((∇uuuh)uuuh)‖2

0,K + ∑
K∈Th

γK‖λ χh(xxx∇ ·uuuh)‖2
0,K

> R2 +λ ((∇uuuh)uuuh,uuuh)−‖ fff‖−1,Ω |uuuh|1,Ω + t2 + y2 + x2 +w2

>
1
2

R2 + x2 + y2 + t2 +w2− 1
2

z2− λ

2
(∇ ·uuuh,uuuh ·uuuh). (3.7)
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Now, using Cauchy–Schwarz’s inequality, Lemma 3.1, (3.5) with qh =Jh(uuuh ·uuuh), the fact that αK 6 1,
(2.13) and the mesh regularity, we get

|(∇ ·uuuh,uuuh ·uuuh)|6 |(∇ ·uuuh,uuuh ·uuuh−Jh(uuuh ·uuuh))|+ |(∇ ·uuuh,Jh(uuuh ·uuuh))|

6
√

d |uuuh|1,Ω ‖uuuh ·uuuh−Jh(uuuh ·uuuh)‖0,Ω +

∣∣∣∣∣ ∑
K∈Th

αK(χh(P(uuuh)),χh(Jh(uuuh ·uuuh)))K

∣∣∣∣∣
+

∣∣∣∣∣ ∑
F∈Eh

τ̃F ‖JP(uuuh)K‖0,F ‖JJh(uuuh ·uuuh)K‖0,F

∣∣∣∣∣
6 CR

{
∑

K∈Th

h2
K |uuuh ·uuuh|21,K

}1/2

+ ∑
K∈Th

αK‖χh(P(uuuh))‖0,K ‖χh(Jh(uuuh ·uuuh))‖0,K

+ ∑
F∈Eh

τ̃F ‖JP(uuuh)K‖0,F ‖JJh(uuuh ·uuuh)K‖0,F

6 CR

{
∑

K∈Th

h2
K |uuuh ·uuuh|21,K

}1/2

+C ∑
K∈Th

αK‖χh(P(uuuh))‖0,K hK |Jh(uuuh ·uuuh)|1,K

+ ∑
F∈Eh

τ̃F ‖JP(uuuh)K‖0,F ‖JJh(uuuh ·uuuh)K‖0,F

6 CR

{
∑

K∈Th

h2
K |uuuh ·uuuh|21,K

}1/2

+Ct

{
∑

K∈Th

αKh2
K |uuuh ·uuuh|21,ωK

}1/2

+ y

{
∑

F∈Eh

τ̃F‖JJh(uuuh ·uuuh)K‖2
0,F

}1/2

6 C{R+ t + y}
{

∑
K∈Th

h2
K |uuuh ·uuuh|21,K + ∑

F∈Eh

τ̃F‖JJh(uuuh ·uuuh)−uuuh ·uuuhK‖2
0,F

}1/2

.

Using that τ̃F 6 ChF (see Lemma 2 in Barrenechea & Valentin (2010b)), (2.6), (2.13) and the mesh
regularity, we have

∑
F∈Eh

τ̃F‖JJh(uuuh ·uuuh)−uuuh ·uuuhK‖2
0,F 6 C ∑

K∈Th

‖Jh(uuuh ·uuuh)−uuuh ·uuuh‖2
0,K

6 C ∑
K∈Th

h2
K |uuuh ·uuuh|21,K ,

thus we arrive at

|(∇ ·uuuh,uuuh ·uuuh)|6C{R+ t + y}
{

∑
K∈Th

h2
K |uuuh ·uuuh|21,K

}1/2

. (3.8)

Also, applying the local inverse inequality (2.5) with l = m = 0, p = ∞ and 1 6 q 6 ∞, we obtain that

‖vh‖∞,K 6Ch
− d

q
K ‖vh‖0,q,K . Next, using the Sobolev embedding H1(Ω) ↪→ Lq(Ω), which is valid for all

26 q < ∞ if d = 2 and for 26 q6 6, if d = 3, we get

|uuuh ·uuuh|1,K = ‖∇(uuuh ·uuuh)‖0,K = 2‖∇(uuuh)uuuh‖0,K 6C|uuuh|1,K ‖uuuh‖∞,K

6 Ch
− d

q
K |uuuh|1,K ‖uuuh‖0,q,K 6Ch

− d
q

K |uuuh|1,K ‖uuuh‖0,q,Ω 6Ch
− d

q
K |uuuh|1,K |uuuh|1,Ω .
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Now, taking q = 4, if d = 2, or q = 6, if d = 3, we get

|uuuh ·uuuh|1,K 6Ch
− 1

2
K |uuuh|1,K |uuuh|1,Ω

and then from (3.7) and (3.8), we arrive at

(N (uuuh),uuuh)>
1
2

R2 + x2 +w2 + y2 + t2− 1
2

z2− λ

2
(∇ ·uuuh,uuuh ·uuuh)

>
1
2

R2 + x2 +w2 + y2 + t2− 1
2

z2−C
λ

2
{R+ t + y}

{
∑

K∈Th

hK |uuuh|21,K

}1/2

|uuuh|1,Ω

>
1
2

R2 + x2 +w2 + y2 + t2− 1
2

z2−Ch
1
2 λ{R+ t + y}R2

>
1
2

R2 + x2 +w2 + y2 + t2− 1
2

z2−Ch
1
2 λR3−Ch

1
2 λ{t + y}R2

>
1
2

R2 + x2 +w2 + y2 + t2− 1
2

z2−Ch
1
2 λR3− 1

2
t2− 1

2
y2− 3

2
C2hλ

2R4

>
1
2

R2 + x2 +
1
2

t2 +w2 +
1
2

y2− z2−Ch
1
2 λR3− 3

2
C2hλ

2R4.

We define R :=
1

6Cλh1/2 and C̃ :=
1

12C
, and note that (3.6) leads to

12C λh1/2 z6 1 .

Consequently, the definition of R leads to z 6 R
2 , and then, we can gather the previous inequalities

together to prove

(N (uuuh),uuuh) >

(
1
2
− 1

6
− 3

72

)
R2− z2 + x2 +

1
2

t2 +
1
2

y2 +w2

>
1
4

R2− z2 +
1
2

y2 + x2 +
1
2

t2 +w2

> x2 +
1
2

y2 +
1
2

t2 +w2 > 0.

We conclude from Brouwer’s fixed point Theorem (see Chapter IV, Corollary 1.1 in Girault & Raviart
(1986)) that there exists a function uuuh,λ ∈ HHHh such that |uuuh,λ |1,Ω 6 R and N (uuuh,λ ) = 000. �

Now, we head to the question of uniqueness. To this end, we assume that λ is “small enough” such

that αK = γK = 1 on every element K ∈Th. Also, on each edge (face) F ∈ Eh we take τ̃F =
hF

12
as both

expressions are equivalent in the diffusion dominated case (see Lemma 2 in Barrenechea & Valentin
(2010b) for details). Then, the method (3.4) simplifies to: Find (uuuh,λ , ph,λ ) ∈ HHHh×Qh such that

(∇uuuh,λ ,∇vvvh)+λ ((∇uuuh,λ )uuuh,λ ,vvvh)− (ph,λ ,∇ · vvvh)+(qh,∇ ·uuuh,λ )

+ ∑
K∈Th

(χh(ph,λ ),χh(qh))K + ∑
K∈Th

(pK
e (λ (∇uuuh,λ )uuuh,λ ), pK

e (λ (∇vvvh)uuuh,λ ))K

+ ∑
K∈Th

(
λ χh(xxx∇ ·uuuh,λ ),λ χh(xxx∇ · vvvh)

)
K + ∑

F∈Eh

hF

12
(
Jph,λ K,JqhK

)
F = ( fff ,vvvh) , (3.9)
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for all (vvvh,qh) ∈ HHHh×Qh. Next, method (3.9) is written as a fixed point problem through the mapping
Gh : Λ ×H2(Th)

d×H1(Th)−→ HHHh×Qh , where Gh(λ ,zzz, t) = (wwwh,rh) is such that

(wwwh,vvvh)+(rh,qh) =−( fff −λ (∇zzz)zzz,vvvh)+ ∑
K∈Th

(
pK

e (λ (∇zzz)zzz), pK
e (λ (∇vvvh)zzz)

)
K ,

for all (vvvh,qh) ∈ HHHh×Qh. As a result, problem (3.9) is analogous to the following problem

Fh(λ ,uuuh,λ , ph,λ ) :=(uuuh,λ , ph,λ )+ThGh(λ ,uuuh,λ , ph,λ ) = 000. (3.10)

We are ready to present the uniqueness result.

THEOREM 3.2 Provide that λ is “sufficiently small”, in the sense that

λ (1+λ )(1+λ h)2 <C ,

where C is a given positive constant independent of h, the solution of problem (3.9) is unique.

Proof. First, observe that a solution of (3.9) is a fixed point of the operator −ThGh using (3.10).
Thereby, the proof reduces to show that the operator −Th Gh is a strict contraction in the ball B :=
{(vvvh,qh) ∈ HHHh×Qh : |||(vvvh,qh)|||6 1}, and use Banach’s fixed point Theorem.

Let (uuuh, ph), (vvvh,qh) ∈ B. From Lemma 2.4 and the definition of operators Th and Gh, it holds

|||ThGh(λ ,uuuh, ph)−ThGh(λ ,vvvh,qh)|||6C(1+λ h)2 sup
|||(wwwh,th)|||61

(Gh(λ ,uuuh, ph)−Gh(λ ,vvvh,qh),(wwwh, th))

6C(1+λ h)2 sup
|||(wwwh,th)|||61

{
λ ((∇uuuh)uuuh− (∇vvvh)vvvh,wwwh)+ ∑

K∈Th

(
pK

e (λ (∇uuuh)uuuh), pK
e (λ (∇wwwh)uuuh)

)
K

− ∑
K∈Th

(
pK

e (λ (∇vvvh)vvvh), pK
e (λ (∇wwwh)vvvh)

)
K

}
6C(1+λ h)2 sup

|||(wwwh,th)|||61

{
λ ((∇uuuh)uuuh− (∇vvvh)vvvh,wwwh)+ ∑

K∈Th

(
pK

e (λ (∇uuuh)uuuh), pK
e (λ (∇wwwh)(uuuh− vvvh))

)
K

+ ∑
K∈Th

(
pK

e (λ ((∇uuuh)uuuh− (∇vvvh)vvvh), pK
e (λ (∇wwwh)vvvh)

)
K

}
=C(1+λ h)2 sup

|||(wwwh,th)|||61

{
I+ II+ III

}
. (3.11)

We will estimate each term in the right-hand side of (3.11). First, using (2.3), and the following identity

(∇uuuh)uuuh− (∇vvvh)vvvh = ∇(uuuh− vvvh)uuuh +∇vvvh(uuuh− vvvh)

and the definition of the norm ||| · |||, we get

I 6 C λ |||(uuuh, ph)− (vvvh,qh)||||||(wwwh, th)|||. (3.12)

Next, from (2.5) with m = 0, l = 1 and p = q = 4, (3.2), Hölder, Cauchy–Schwarz and Poincaré inequal-
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ities, the inclusion H1(Ω) ↪→ L4(Ω) and the definition of the norm ||| · |||, we obtain

II = ∑
K∈Th

(
pK

e (λ (∇uuuh)uuuh), pK
e (λ (∇wwwh)(uuuh− vvvh))

)
K

6 C ∑
K∈Th

λ
2h2

K‖(∇uuuh)uuuh‖0,K‖(∇wwwh)(uuuh− vvvh)‖0,K

6 C ∑
K∈Th

λ
2h2

K‖∇uuuh‖0,4,K‖uuuh‖0,4,K‖∇wwwh‖0,4,K‖uuuh− vvvh‖0,4,K

6 Cλ
2

∑
K∈Th

h2
K h−1

K ‖uuuh‖0,4,K‖uuuh‖0,4,K h−1
K ‖wwwh‖0,4,K ‖uuuh− vvvh‖0,4,K

6 Cλ
2 |||(uuuh, ph)|||2|||(uuuh, ph)− (vvvh,qh)||||||(wwwh, th)|||

6 Cλ
2 |||(uuuh, ph)− (vvvh,qh)||| |||(wwwh, th)|||. (3.13)

Using similar arguments, we get

III = ∑
K∈Th

(
pK

e (λ ((∇uuuh)uuuh− (∇vvvh)vvvh)), pK
e (λ (∇wwwh)vvvh)

)
K

6 Cλ
2

∑
K∈Th

h2
K‖(∇uuuh)uuuh− (∇vvvh)vvvh‖0,K ‖∇wwwh‖0,4,K‖vvvh‖0,4,K

6 Cλ
2
{
|||(uuuh, ph)|||+ |||(vvvh,qh)|||

}
|||(uuuh, ph)− (vvvh,qh)||||||(vvvh,qh)||||||(wwwh, th)|||

6 Cλ
2|||(uuuh, ph)− (vvvh,qh)||||||(wwwh, th)|||. (3.14)

Now, replacing (3.12), (3.13) and (3.14), in (3.11), we see that

|||ThGh(λ ,uuuh, ph)−ThGh(λ ,vvvh,qh)|||6Cλ (1+λ )(1+λh)2 |||(uuuh, ph)− (vvvh,qh)||| ,

and then the result follows if λ is such that C λ (1+λ )(1+λ h)2 < 1. �

4. Error analysis

This section establishes a convergence result for the LPS method by extending the ideas proposed in
Araya et al. (2012) for the RELP method. We place the method at the diffusion dominated regime
for which the well–posedness is assured. The first result establishes that the differential operator
Duuu,pFh(λ ,Ihuuuλ ,Jh pλ ) is an isomorphism under appropriate conditions on h and λ . This result is
key for the forthcoming error analysis.

LEMMA 4.1 Assume that a regular branch λ → (uuuλ , pλ ) of solutions of problem (2.17) exists on a
given compact interval Λ ⊂R. Moreover, assume that (uuuλ , pλ ) belongs to the space H2(Ω)d×H1(Ω).
Then, there exists a constant h0 > 0 such that, for all h6 h0, the mapping Duuu,pFh(λ ,Ihuuuλ ,Jh pλ ) is an
isomorphism onto HHHh×Qh and

‖{Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHHh×Qh) 6 8‖{Duuu,pF(λ ,uuuλ , pλ )}−1‖L (HHH×Q). (4.1)

Proof. We start noting that, as T is a linear and continuous operator, from (2.3) and (2.9) we get

‖Duuu,pF(λ ,uuuλ , pλ )−Duuu,pF(λ ,Ihuuuλ ,Jh pλ )‖L (HHH×Q) 6Cλ hL,
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where
L := sup

λ∈Λ

max{‖ fff‖0,Ω ,‖uuuλ‖2,Ω ,‖pλ‖1,Ω}. (4.2)

Now, consider the linear operator B ∈L (HHH×Q) defined by

B := {Duuu,pF(λ ,uuuλ , pλ )}−1 [Duuu,pF(λ ,uuuλ , pλ )−Duuu,pF(λ ,Ihuuuλ ,Jh pλ )
]
.

Observe that Duuu,pF(λ ,Ihuuuλ ,Jh pλ ) = Duuu,pF(λ ,uuuλ , pλ )(I−B) and since it holds

lim
h→0
‖{Duuu,pF(λ ,uuuλ , pλ )}−1‖L (HHH×Q) ‖Duuu,pF(λ ,uuuλ , pλ )−Duuu,pF(λ ,Ihuuuλ ,Jh pλ )‖L (HHH×Q) = 0,

then there exists h2 > 0 such that ‖B‖L (HHH×Q) 6
1
2 for all h 6 h2. As such, I−B is an isomorphism

onto HHH×Q and

‖(I−B)−1‖L (HHH×Q) 6
1

1−‖B‖L (HHH×Q)
6 2. (4.3)

We conclude that Duuu,pF(λ ,Ihuuuλ ,Jh pλ ) is also an isomorphism of HHH×Q into itself for all h6 h2 and

‖{Duuu,pF(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHH×Q) 6 2‖{Duuu,pF(λ ,uuuλ , pλ )}−1‖L (HHH×Q). (4.4)

Now, notice that

Duuu,pFh(λ ,Ihuuuλ ,Jh pλ ) = Th
[
Duuu,pGh(λ ,Ihuuuλ ,Jh pλ )−Duuu,pG(λ ,Ihuuuλ ,Jh pλ )

]
+A1, (4.5)

where the mapping A1 := I+ThDuuu,pG(λ ,Ihuuuλ ,Jh pλ ), belongs to L (HHH×Q), but also to L (HHHh×Qh).
Then, we use Lemma 2.4, Hölder’s inequality, (2.11), (2.12), and the inclusions H2(Ω) ↪→ L∞(Ω) and
H1(Ω) ↪→ L4(Ω), to conclude that

‖A1−Duuu,pF(λ ,Ihuuuλ ,Jh pλ )‖L (HHH×Q) 6C (1+λh)2
λ hL .

As a result, there exists h1 6 h2 such that for all h6 h1, the mapping A1 is an isomorphism onto HHH×Q,
and using (4.3), it holds

‖A −1
1 ‖L (HHH×Q) 6 2‖{Duuu,pF(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHH×Q).

In addition, since A1 maps HHHh×Qh onto itself and is a injective operator, then it is also an isomorphism
onto HHHh×Qh and

‖A −1
1 ‖L (HHHh×Qh) 6 ‖A

−1
1 ‖L (HHH×Q) 6 2‖{Duuu,pF(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHH×Q). (4.6)

Next, using Lemma 2.4 and (4.5), it holds

‖A1−Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )‖L (HHHh×Qh)

= sup
|||(vvvh,qh)|||61

|||Th(Duuu,pGh(λ ,Ihuuuλ ,Jh pλ )−Duuu,pG(λ ,Ihuuuλ ,Jh pλ ))[vvvh,qh]|||

6 C (1+λ h)2 sup
|||(vvvh,qh)|||61

‖(Duuu,pGh(λ ,Ihuuuλ ,Jh pλ )−Duuu,pG(λ ,Ihuuuλ ,Jh pλ ))[vvvh,qh]‖(HHHh×Qh)
′

6 C (1+λ h)2 sup
|||(wwwh,th)|||61

sup
|||(vvvh,qh)|||61

{
∑

K∈Th

(
pK

e (λ (∇Ihuuuλ )Ihuuuλ ), pK
e (λ (∇wwwh)vvvh)

)
K

+ ∑
K∈Th

(
pK

e (λ (∇vvvh)Ihuuuλ +λ (∇Ihuuuλ )vvvh), pK
e (λ (∇wwwh)Ihuuuλ )

)
K

}
= C (1+λ h)2 sup

|||(wwwh,th)|||61
sup

|||(vvvh,qh)|||61
{I + II} .
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Let us estimate the right-hand side above. From (2.9), (2.5) with l = 1, m = 0 and p = q = ∞, (2.12)
and the embedding H2(Ω) ↪→ L∞(Ω), we obtain

‖(∇uuuλ )uuuλ − (∇Ihuuuλ )Ihuuuλ‖0,K

6 ‖∇(uuuλ −Ihuuuλ )uuuλ‖0,K +‖(∇Ihuuuλ )(uuuλ −Ihuuuλ )‖0,K

6 |uuuλ −Ihuuuλ |1,K‖uuuλ‖∞,K +‖∇Ihuuuλ‖∞,K‖uuuλ −Ihuuuλ‖0,K

6 ChK‖uuuλ‖2,K‖uuuλ‖∞,K +Ch−1
K ‖Ihuuuλ‖∞,KCh2

K‖uuuλ‖2,K

6 ChKL‖uuuλ‖2,K . (4.7)

Also, using the same arguments, we get

‖λ (∇Ihuuuλ )Ihuuuλ‖0,K 6CLλ ‖uuuλ‖2,K . (4.8)

We estimate item I using Lemma 3.1, (4.8) and (2.5) with l = 1, m = 0, p = q = 4, Poincaré and Hölder
inequalities and the inclusion H1(Ω) ↪→ L4(Ω), as follows

I = ∑
K∈Th

(
pK

e (λ (∇Ihuuuλ )Ihuuuλ ), pK
e (λ (∇wwwh)vvvh)

)
K

6 C ∑
K∈Th

λ h2
K‖λ (∇Ihuuuλ )Ihuuuλ‖0,K‖(∇wwwh)vvvh‖0,K

6 C ∑
K∈Th

λ
2 h2

K L‖uuuλ‖2,K‖∇wwwh‖0,4,K‖vvvh‖0,4,K

6 C ∑
K∈Th

λ
2 h2

K L‖uuuλ‖2,K h−1
K ‖wwwh‖0,4,K‖vvvh‖0,4,K

6 C λ
2 L2 h |||(wwwh, th)||||||(vvvh,qh)|||. (4.9)

Concerning item II, we use again Lemma 3.1, the embeddings of H2(Ω) ↪→ L∞(Ω) and H1(Ω) ↪→
L4(Ω), (2.5) with l = 1, m = 0, p = q = 4, (2.12), (2.10) and Poincaré and Hölder inequalities, to get

II = ∑
K∈Th

(
pK

e (λ (∇vvvh)Ihuuuλ +λ (∇Ihuuuλ )vvvh), pK
e (λ (∇wwwh)Ihuuuλ )

)
K

6C λ
2

∑
K∈Th

‖pK
e ((∇vvvh)Ihuuuλ +(∇Ihuuuλ )vvvh)‖0,K‖pK

e ((∇wwwh)Ihuuuλ )‖0,K

6C λ
2

∑
K∈Th

h2
K‖(∇vvvh)Ihuuuλ +(∇Ihuuuλ )vvvh‖0,K‖(∇wwwh)Ihuuuλ‖0,K

6C λ
2

∑
K∈Th

h2
K {‖∇vvvh‖0,K‖Ihuuuλ‖∞,K +‖∇Ihuuuλ‖0,4,K‖vvvh‖0,4,K}‖∇wwwh‖0,K‖Ihuuuλ‖∞,K

6C λ
2

∑
K∈Th

h2
K
{
‖∇vvvh‖0,K‖uuuλ‖∞,K +h−1

K ‖Ihuuuλ‖0,4,K‖vvvh‖0,4,K
}
‖∇wwwh‖0,K‖uuuλ‖∞,K

6C λ
2 L2 h(1+h) |||(vvvh,qh)||| |||(wwwh, th)|||. (4.10)

Therefore, from (4.9) and (4.10) it follows that

‖A1−Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )‖L (HHHh×Qh) 6C h(1+λ h)2 (1+h)λ
2 L2,
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and it results that there exists h0 6 h1 such that for all h 6 h0 the mapping Duuu,pFh(λ ,Ihuuuλ ,Jh pλ ) is
an isomorphism of HHHh×Qh into itself and

‖{Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHHh×Qh) 6 2‖A −1
1 ‖L (HHH×Q). (4.11)

Finally, from (4.4), (4.6) and (4.11) we obtain (4.1). �
Since the LPS method lacks of consistency, it is important to estimate such an error in order to prove

that it does not deteriorate the convergence rates. This is the subject of the next theorem.

THEOREM 4.1 Let (uuuλ , pλ ) be a solution of (2.15) and assume that (uuuλ , pλ ) ∈ H2(Ω)d ×H1(Ω). Let
Fh be the mapping defined in (3.10). Then, we have the following estimate

|||Fh(λ ,uuuλ , pλ )|||6C hL(1+hλ
2 L2),

where L is given in (4.2).

Proof. From (2.7), (2.5) and the continuous embedding H2(Ω) ↪→ L∞(Ω), we get

|||Fh(λ ,uuuλ , pλ )||| = sup
|||(vvvh,qh)|||61

(Fh(λ ,uuuλ , pλ ),(vvvh,qh))

= sup
|||(vvvh,qh)|||61

{
∑

K∈Th

[
(χh(pλ ),χh(qh))K +

(
pK

e (λ (∇uuuλ )uuuλ ), pK
e (λ (∇vvvh)uuuλ )

)
K

]}

6 C sup
|||(vvvh,qh)|||61

{
∑

K∈Th

h2
K

[
|pλ |1,K |qh|1,K +λ

2‖(∇uuuλ )uuuλ‖0,K‖(∇vvvh)uuuλ‖0,K

]}

6 C sup
|||(vvvh,qh)|||61

{
∑

K∈Th

h2
K

[
|pλ |1,K h−1

K ‖qh‖0,K +λ
2‖uuuλ‖2

∞,K |uuuλ |1,K |vvvh|1,K
]}

6 C sup
|||(vvvh,qh)|||61

{
h
[
|pλ |1,Ω‖qh‖0,Ω +λ

2 h‖uuuλ‖2
∞,Ω |uuuλ |1,Ω |vvvh|1,Ω

]}
6 C hL(1+hλ

2L2),

and the result follows. �
The next result states further properties of the mapping Fh and its derivative which will be used to

prove error estimates.

LEMMA 4.2 Assume the hypothesis of Lemma 4.1 hold. Therefore, there exists a constant C, which is
independent of h and λ , such that

|||Fh(λ ,Ihuuuλ ,Jh pλ )|||6C hL
{

2+λ L(1+λ h)2(1+λ hL)+hλ
2 L2} . (4.12)

Furthermore, for each ρ > 0 and for all (vvvh,qh) ∈ HHHh×Qh such that (vvvh,qh) belongs to the ball
centered at (Ihuuuλ ,Jh pλ ) with radius ρ , there exists a constant C > 0, independent of h and λ but
depending on ρ , such that

‖Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )−Duuu,pFh(λ ,vvvh,qh)‖L (HHHh×Qh)

6C λ (1+λ h)2 (1+λL) |||(Ihuuuλ − vvvh,Jh pλ −qh)||| . (4.13)
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Proof. From the linearity of the operator Th we obtain

|||Fh(λ ,Ihuuuλ ,Jh pλ )|||
= |||Fh(λ ,Ihuuuλ ,Jh pλ )−Fh(λ ,uuuλ , pλ )|||+ |||Fh(λ ,uuuλ , pλ )|||
6 |||(Ihuuuλ −uuuλ ,Jh pλ − pλ )|||+ |||Th(Gh(λ ,uuuλ , pλ )−Gh(λ ,Ihuuuλ ,Jh pλ ))|||+ |||Fh(λ ,uuuλ , pλ )|||
= S1 +S2 +S3. (4.14)

To estimate S1, we use (2.9) and (2.13) and we get

S1 6C hL. (4.15)

Next, using the continuity of Th (see Lemma 2.4) and the definition of the dual norm, it holds

S2 = |||Th(Gh(λ ,uuuλ , pλ )−Gh(λ ,Ihuuuλ ,Jh pλ ))|||
6 C (1+λ h)2 sup

|||(vvvh,qh)|||61
(Gh(λ ,uuuλ , pλ )−Gh(λ ,Ihuuuλ ,Jh pλ ),(vvvh,qh))

6 C (1+λ h)2 sup
|||(vvvh,qh)|||61

{
λ ((∇uuuλ )uuuλ − (∇Ihuuuλ )Ihuuuλ ,vvvh)Ω

+ ∑
K∈Th

(
pK

e (λ (∇uuuλ )uuuλ ), pK
e (λ (∇vvvh)uuuλ )

)
K

− ∑
K∈Th

(
pK

e (λ (∇Ihuuuλ )Ihuuuλ ), pK
e (λ (∇vvvh)Ihuuuλ )

)
K

}
6 C (1+λ h)2 sup

|||(vvvh,qh)|||61
{I + II + III} .

As for the first term on the right-hand side above, we use (4.7), (4.8) and Cauchy–Schwarz and
Poincaré inequalities, to get

I 6 C hλ L2 |||(vvvh,qh)|||. (4.16)

We estimate item II, through Cauchy–Schwarz’s inequality, (3.2) and the continuous embedding
H2(Ω) ↪→ L∞(Ω) as follows

II = ∑
K∈Th

(
pK

e (λ (∇uuuλ )uuuλ ), pK
e (λ (∇vvvh)uuuλ )

)
K

6 C ∑
K∈Th

h2
K ‖λ (∇uuuλ )uuuλ‖0,K‖λ (∇vvvh)uuuλ‖0,K

6 C ∑
K∈Th

λ
2h2

K ‖uuuλ‖2
∞,K |uuuλ |1,K |vvvh|1,K

6 C λ
2h2L3 |||(vvvh,qh)||| . (4.17)

Item III is bounded using Lemma 3.1, (4.8) and the continuous embedding H2(Ω) ↪→ L∞(Ω), and (4.8)
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as follows

III = ∑
K∈Th

(
pK

e (λ (∇Ihuuuλ )Ihuuuλ ), pK
e (λ (∇vvvh)Ihuuuλ )

)
K

6 C ∑
K∈Th

h2
K ‖λ (∇Ihuuuλ )Ihuuuλ‖0,K‖λ (∇vvvh)Ihuuuλ‖0,K

6 C ∑
K∈Th

λ
2h2

K L‖uuuλ‖2,K |vvvh|1,K‖Ihuuuλ‖∞,K

6 C ∑
K∈Th

λ
2h2

K L‖uuuλ‖2,K |vvvh|1,K‖uuuλ‖∞,K

6 Cλ
2 h2 L3 |||(vvvh,qh)||| . (4.18)

Now, gathering (4.16)–(4.18) together, we obtain the following estimate

S2 6C h(1+λ h)2 (1+λ hL)λ L2 , (4.19)

and from (4.14) and (4.15), (4.19), and Theorem 4.1 result (4.12) follows. Estimate (4.13) is addressed
next. Let (uuuh, ph),(vvvh,qh),(wwwh,rh) ∈ HHHh×Qh with |||(wwwh,rh)||| = 1. From the stability of the discrete
Stokes operator in Lemma 2.4, we get

|||Duuu,pFh(λ ,vvvh,qh)(wwwh,rh)−Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )(wwwh,rh)|||
= |||Th(Duuu,pGh(λ ,vvvh,qh)(wwwh,rh)−Duuu,pGh(λ ,Ihuuuλ ,Jh pλ )(wwwh,rh))|||
6 C (1+λ h)2 sup

|||(zzzh,sh)|||61
(Duuu,pGh(λ ,vvvh,qh)(wwwh,rh)−Duuu,pGh(λ ,Ihuuuλ ,Jh pλ )(wwwh,rh),(zzzh,sh))

6 C (1+λ h)2 sup
|||(zzzh,sh)|||61

{
(λ∇(Ihuuuλ − vvvh)wwwh−λ (∇wwwh)(Ihuuuλ − vvvh),zzzh)

+ ∑
K∈Th

(
pK

e (λ (∇vvvh)vvvh−λ (∇Ihuuuλ )Ihuuuλ ), pK
e (λ (∇zzzh)wwwh)

)
K

− ∑
K∈Th

(
pK

e (λ (∇Ihuuuλ )wwwh +λ (∇wwwh)Ihuuuλ ), pK
e (λ (∇zzzh)Ihuuuλ )

)
K

+ ∑
K∈Th

(
pK

e (λ (∇vvvh)wwwh +λ (∇wwwh)vvvh), pK
e (λ (∇zzzh)vvvh)

)
K

= C (1+λ h)2 sup
|||(zzzh,sh)|||61

{
IV + V + VI + VII

}
.

We bound IV using (2.3) as follows

IV6 2α λ |||(Ihuuuλ − vvvh,Jh pλ −qh)||| |||(wwwh,rh)||| |||(zzzh,sh)||| . (4.20)

We address item V now. To this end, we use Lemma 3.1, (2.5) with l = 1, m = 0 and p = q = 4, the
embedding H1(Ω) ↪→ L4(Ω), Hölder, Cauchy–Schwarz and Poincaré inequalities and the definition of
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the norm ||| · |||, to obtain

V =− ∑
K∈Th

λ
(

pK
e ((∇Ihuuuλ )Ihuuuλ − (∇vvvh)vvvh), pK

e (λ (∇zzzh)wwwh)
)

K

6Cλ
2

∑
K∈Th

h2
K‖(∇Ihuuuλ )Ihuuuλ − (∇vvvh)vvvh‖0,K‖(∇zzzh)wwwh‖0,K

6Cλ
2

∑
K∈Th

h2
K‖(∇Ihuuuλ )Ihuuuλ − (∇vvvh)vvvh‖0,K |zzzh|1,4,K‖wwwh‖0,4,K

6Cλ
2

∑
K∈Th

h2
K {‖(∇Ihuuuλ )(Ihuuuλ − vvvh)‖0,K +‖(∇(Ihuuuλ − vvvh))vvvh‖0,K}h−1

K ‖zzzh‖0,4,K‖wwwh‖0,4,K

6Cλ
2

∑
K∈Th

h2
K {‖∇Ihuuuλ‖0,4,K‖Ihuuuλ − vvvh‖0,4,K +‖∇(Ihuuuλ − vvvh)‖0,4,K‖vvvh‖0,4,K}h−1

K ‖zzzh‖0,4,K‖wwwh‖0,4,K

6Cλ
2

∑
K∈Th

h2
K
{

h−1
K ‖Ihuuuλ‖0,4,K‖Ihuuuλ − vvvh‖0,4,K +h−1

K ‖Ihuuuλ − vvvh‖0,4,K‖vvvh‖0,4,K
}

h−1
K ‖zzzh‖0,4,K‖wwwh‖0,4,K

6Cλ
2 {‖Ihuuuλ‖0,4,Ω +‖vvvh‖0,4,Ω

}
‖Ihuuuλ − vvvh‖0,4,Ω‖zzzh‖0,4,Ω‖wwwh‖0,4,Ω

6Cλ
2 {‖Ihuuuλ‖1,Ω +‖vvvh‖1,Ω

}
‖Ihuuuλ − vvvh‖1,Ω‖zzzh‖1,Ω‖wwwh‖1,Ω

6Cλ
2 {L+ρ}|||(Ihuuuλ − vvvh,Jh pλ −qh)||| |||(wwwh,rh)||| |||(zzzh,sh)|||. (4.21)

We follow closely the same arguments to estimate items VI and VII, and we get

VI = − ∑
K∈Th

λ
(

pK
e ((∇(Ihuuuλ − vvvh))wwwh +(∇wwwh)(Ihuuuλ − vvvh)), pK

e (λ (∇zzzh)Ihuuuλ )
)

K

6 C λ
2

∑
K∈Th

h2
K‖(∇(Ihuuuλ − vvvh))wwwh +(∇wwwh)(Ihuuuλ − vvvh)‖0,K‖(∇zzzh)Ihuuuλ‖0,K

6 C λ
2

∑
K∈Th

h2
K {‖∇(Ihuuuλ − vvvh)‖0,4,K‖wwwh‖0,4,K +‖∇wwwh‖0,4,K‖Ihuuuλ − vvvh‖0,4,K}‖∇zzzh‖0,4,K‖Ihuuuλ‖0,4,K

6 C λ
2L |||(Ihuuuλ − vvvh,Jh pλ −qh)||| |||(wwwh,rh)||| |||(zzzh,sh)|||, (4.22)

and

VII = − ∑
K∈Th

λ
(

pK
e ((∇vvvh)wwwh +(∇wwwh)vvvh), pK

e (λ (∇zzzh)(Ihuuuλ − vvvh))
)

K

6 C λ
2

∑
K∈Th

h2
K‖(∇vvvh)wwwh +(∇wwwh)vvvh‖0,K‖(∇zzzh)(Ihuuuλ − vvvh)‖0,K

6 C λ
2

∑
K∈Th

h2
K {‖∇vvvh‖0,4,K‖wwwh‖0,4,K +‖∇wwwh‖0,4,K‖vvvh‖0,4,K}‖zzzh‖0,4,K‖Ihuuuλ − vvvh‖0,4,K

6 C λ
2
ρ |||(Ihuuuλ − vvvh,Jh pλ −qh)||| |||(wwwh,rh)||| |||(zzzh,sh)|||. (4.23)

Estimate (4.13) results from (4.20)–(4.23). �
We are now ready to prove the existence and uniqueness of a branch of discrete solutions as well as

the error estimate.

THEOREM 4.2 Assume the hypothesis of Lemma 4.1 hold. Therefore, there exists a positive constant
h0(Λ), such that for all h with 0 < h 6 h0, a unique branch λ → (uuuh,λ , ph,λ ) of solutions of problem



A LOW–ORDER LOCAL PROJECTION METHOD FOR THE NAVIER–STOKES EQUATIONS 19 of 29

(3.10) exists in a neighborhood of (uuuλ , pλ ). Moreover, the following estimate holds

sup
λ∈Λ

{
|uuuλ −uuuh,λ |21,Ω +‖pλ − ph,λ‖2

0,Ω
}1/2

6 C h,

where C =C(L,Λ)> 0 does not depend on h.

Proof. As a result of Lemma 4.1, the differential operator Duuu,pFh(λ ,Ihuuuλ ,Jh pλ ) is an isomorphism
of HHHh×Qh onto itself for each λ ∈ Λ , provided that h supλ∈Λ λ is sufficiently small. Now, let Φ :
HHHh×Qh→ HHHh×Qh be the application defined by

Φ(uuuh, ph) :=(uuuh, ph)+Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )
−1Fh(λ ,uuuh, ph) ∀(uuuh, ph) ∈ HHHh×Qh .

Observe that (3.10) may be rewritten as a fixed point problem with respect to the operator Φ . Next, let
(uuuh, ph),(vvvh,qh) ∈ B((Ihuuuλ ,Jh pλ ),ρ), where ρ will be fixed in the sequel. From Lemma 4.2 we get

|||Φ(uuuh, ph)−Φ(vvvh,qh)|||6 ‖{Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHHh×Qh)

|||Fh(λ ,uuuh, ph)−Fh(λ ,vvvh,qh)−Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )[(uuuh, ph)− (vvvh,qh)]|||

6 ‖{Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHHh×Qh)

∣∣∣∣∣∣∣∣∣∣∣∣∫ 1

0

{
Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )

−Duuu,pFh(λ ,uuuh +θ(vvvh−uuuh), ph +θ(qh− ph))

}[
(uuuh, ph)− (vvvh,qh)

]
dθ

∣∣∣∣∣∣∣∣∣∣∣∣
6 C λ (1+λ h)2 (1+λL)ρ ‖{Duuu,pFh(λ ,Ihuuuλ ,Jh pλ )}−1‖L (HHHh×Qh) |||(uuuh, ph)− (vvvh,qh)||| .(4.24)

We are ready to fix parameter ρ , which is defined as follows

ρ := ‖{Duuu,pF(λ ,uuuλ , pλ )}−1‖−1
L (HHH×Q) |||Fh(λ ,Ihuuuλ ,Jh pλ )||| .

Next, replacing it in (4.24), and using lemmas 4.1 and 4.2, we arrive at

|||Φ(uuuh, ph)−Φ(vvvh,qh)|||6C(L,Λ)h |||(uuuh, ph)− (vvvh,qh)||| . (4.25)

As a result, picking h small enough, Φ becomes a contraction from B((Ihuuuλ ,Jh pλ ),ρ) onto itself, and
we conclude that for λ ∈Λ fix, problem (3.10) has a unique solution (uuuh,λ , ph,λ )∈B((Ihuuuλ ,Jh pλ );ρ).
The error estimate follows using the triangle inequality

|||(uuuλ −uuuh,λ , pλ − ph,λ )|||6 |||(uuuλ −Ihuuuλ , pλ −Jh pλ )|||+ |||(Ihuuuλ −uuuh,λ ,Jh pλ − ph,λ )|||,

and the fact that (uuuh,λ , ph,λ ) ∈ B((Ihuuuλ ,Jh pλ );ρ) with ρ 6C(L,Λ)h, and (2.9)–(2.14). �

5. Numerical validation

The exact solution of local problem (3.1) is (in general) not available, and then, method (3.3) requests
a two-level discretization strategy. Nevertheless, an one-level version of method (3.3) can be proposed
and still preserves the overall properties of the original two-level method. To see this more clearly,
notice first that for a given function vvv = ∇q ∈ L2(K)d , the solution of problem (3.1) reads

uuuK
e (∇q) = 000 and pK

e (∇q) = χh(q). (5.1)
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Also, observe that from (5.1), we can get the following closed formula

pK
e (ΠK((∇uuuh)uuuh)) = χh(xxx · (∇uuuh)ΠKuuuh) , (5.2)

pK
e (ΠK((∇vvvh)uuuh)) = χh(xxx · (∇vvvh)ΠKuuuh) . (5.3)

As a result, we can simplify (3.3) by replacing pK
e ((∇uuuh)uuuh) by pK

e (ΠK((∇uuuh)uuuh)), and pK
e ((∇vvvh)uuuh)

by pK
e (ΠK((∇vvvh)uuuh)), and using the (5.2) and (5.3) in method (3.3). The result is an one-level LPS

method which reads: Find (uuuh, p̃h) ∈ HHHh×Qh such that

ν(∇uuuh,∇vvvh)+((∇uuuh)uuuh,vvvh)− (p̃h,∇ · vvvh)+(q̃h,∇ ·uuuh)

+ ∑
K∈Th

αK

ν
[(χh(p̃h),χh(q̃h))K +(χh(xxx · (∇uuuh)ΠKuuuh),χh(xxx · (∇vvvh)ΠKuuuh))K ]

+ ∑
K∈Th

γK

ν
(χh(xxx ∇ ·uuuh),χh(xxx ∇ · vvvh))K + ∑

F∈Eh

τF (Jp̃hK,Jq̃hK)F = ( f̃ff ,vvvh) . (5.4)

REMARK 5.1 One-level method (5.4) is more suitable to be implemented than the original LPS method
(3.3) as the former avoids two-level computations. As such, version (5.4) will be adopted to perform
numerical validations. Notice that the theoretical results developed for method (3.3) remains valid since
the operator pK

e ◦ ΠK shares the same property as the operator pK
e (see the stability result in Lemma

3.1, for instance). This is a simple consequence of the L2 stability of the projection operator ΠK .
Consequently, overall theoretical results can be extended, with minor differences, to the simplified LPS
method (5.4).

Next, numerical experiments validate the LPS method. We focus on three-dimensional test cases
since similar conclusions may be also obtained from the two-dimensional tests. We first propose an
analytical numerical test from which theoretical convergence results are validated. Then, we address
numerical comparisons with some well-documented benchmarks from the literature.

5.1 Analytic solution

In this case Ω :=]0,1[3, ν = 1, 10−2. The right hand-side f̃ff is chosen such that the solution of the
problem is given by

uuu(x,y,z) = (ex sinz,−ex sinz, ex cosz− ex cosy) and p(x,y,z) =−1
2

e2x +
1
4
(e2−1).

Figures 1–4 highlight the convergence rates for the finite elements P1×P1 (with continuos pressure)
and P1×P0. We observe a perfect agreement with the theoretical results.



A LOW–ORDER LOCAL PROJECTION METHOD FOR THE NAVIER–STOKES EQUATIONS 21 of 29

|u− uh|1,Ω
‖u− uh‖0,Ω
‖p− ph‖0,Ω

h

h2

log h

lo
g
er
ro
r

10.10.01

10

1

0.1

0.01

0.001

0.0001

FIG. 1. Convergence history for the P1×P1 scheme (ν = 1).
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FIG. 2. Convergence history for the P1×P0 scheme (ν = 1).
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FIG. 3. Convergence history for the P1×P1 scheme (ν = 10−2).
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FIG. 4. Convergence history for the P1×P0 scheme (ν = 10−2).

5.2 3D Lid–driven cavity problem

We consider the rectangular cavity depicted in Figure 5 with the Dirichlet boundary conditions shown

also in Figure 5. The Reynolds’s number (Re :=
1
ν
) is set to Re = 1500.

floor wall

x

z

y

to wall u = (1, 0, 0)

solid wall

0.5

1.5 13

0

0.5

0

u = (0, 0, 0)

u = (0, 0, 0)

1

FIG. 5. Boundary conditions for the 3D lid–driven cavity.

Figures 6 and 9 show the trajectory of some particles released from (0.5,1.9,0.03) and (0.188,1.567,0.0708)
and computed using the LPS method with the finite elements P1×P1 (continuos pressure) and P1×P0.
We note that we recover the swirling paths which is characteristic of the three-dimensional flow (see
Shankar & Deshpande (2000) and Chiang et al. (1996), for instance).
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FIG. 6. Trajectory of particles released at (0.5,1.9,0.03) (left) and at (0.188,1.567,0.0708) (right) using the P1×P1 element.
Here we picture only a half of the cavity.

Next, we depict in Figures 7 and 10 the streamlines on three different plane sections (set at inflow, at
the middle and at the outflow of the domain) obtained using the finite elements P1×P1 and P1×P0. We
observe a qualitative agreement with the results presented in Shankar & Deshpande (2000) and Chiang
et al. (1996).

FIG. 7. Streamlines at different cross-sections using the finite element P1×P1.
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Figures 8 and 11 shows the isosurfaces of the magnitude of the velocity field with value equal to
0.13, and the isosurfaces of the vorticity magnitude with value equal to 1. Such results are obtained
using the finite elements P1×P1 and P1×P0. We observe the primary vortex within the cavity as
expected, which turns to be qualitatively similar to the one presented in Ravnik et al. (2009).

FIG. 8. Isosurface of |uuu|= 0.13 (left) and isosurface of |∇×uuu|= 1 (right) with the P1×P1 element.

FIG. 9. Trajectory of particles released at (0.5,1.9,0.03) (left) and at (0.188,1.567,0.0708) (right) using the P1×P0 element.
Here we picture only a half of the cavity.



A LOW–ORDER LOCAL PROJECTION METHOD FOR THE NAVIER–STOKES EQUATIONS 25 of 29

FIG. 10. Streamlines at different cross-sections using the finite element P1×P0.

FIG. 11. Isosurface of |uuu|= 0.13 (left) and isosurface of |∇×uuu|= 1 (right) with the P1×P1 element.

5.3 The circular cylinder problem

The statement of the problem is shown in Figure 12. The inflow velocity field is uuup = (7.2yz(0.41−
y)(0.41− z)/0.414,0,0)T and ν = 10−3 (for further details, see Turek (1999)).
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FIG. 12. Domain and boundary conditions for the flow problem around a cylinder with circular cross–section.

We validate our numerical results using the drag and the lift coefficients defined as follows

CD :=
2

ū2D0.41

∫
S
(ν

∂vvvt

∂nnn
ny− pnx)dS, CL := − 2

ū2D0.41

∫
S
(ν

∂vvvt

∂nnn
nx + pny)dS .

Here S is the boundary of the cylinder, nnn := (nx,ny,nz) is the outward normal vector on S, vvvt is the
tangential component of the velocity on S and ttt is one of the tangent vectors on S. We set D, the cylinder

diameter, to 0.1 and ū, the mean velocity, to
4
9

up(0,0.205,0.205). Finally, we denote the difference of
pressure between two points by

∆ p := p(xa,ya,za)− p(xe,ye,ze),

and we evaluate it at the points (xa,ya,za) = (0.45,0.2,0.205) and (xe,ye,ze) = (0.55,0.2,0.205).
In Table 1 we compare the results from the LPS method with the ones obtained from other ap-

proaches in the literature. We see that the results remain at the same range of values (despite the differ-
ences at the order of approximation among the methods).

Scheme CD CL ∆ p
Schäfer et. al. Schäfer & Turek (1996) 6.1295 0.0093 0.1693
ANSYS-CFX Bayraktar et al. (2012) 6.1829 0.0094 -
OpenFOAM Bayraktar et al. (2012) 6.1893 0.0097 -
FEATFLOW Becker & Braack (2001) 6.1847 0.0094 -
LPS P1×P1 6.0568 0.0088 0.1755
LPS P1×P0 5.9322 0.0084 0.1669

Table 1. The drag and lift coefficients, and the pressure obtained from different numerical methods.

Figures 13 and 14 show a zoom of the streamtraces and the isovalues of the magnitude of the velocity
and of the pressure at the cross-section z = 0.205. Here we used the finite elements P1×P1 (continuos
pressure) and P1×P0. Observe that the overall results are in accordance with the expected behavior of
the fluid flow (see Bayraktar et al. (2012), for instance).
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FIG. 13. The streamtracers (top left) and the isovalues of the magnitude of the velocity field (top right), and the isovalues of the
magnitude of the pressure (bottom left) and streamlines of the velocity at a horizontal cross-section (bottom right). Here we used
the finite element P1×P1.

FIG. 14. The streamtracers (top left) and the isovalues of the magnitude of the velocity field (top right), and the isovalues of the
magnitude of the pressure (bottom left) and streamlines of the velocity at a horizontal cross-section (bottom right). Here we used
the finite element P1×P0.



28 of 29 R. ARAYA ET AL.

6. Conclusions

We proposed a stabilized “term-by-term” finite element method for the fully non-linear incompressible
Navier-Stokes equations. Driven by the solution of local Stokes problems, the stabilized terms (with
their stabilization parameters) made the simplest element and the equal-order piecewise linear spaces
inf–sup stable. From a practical standpoint, such an upscaling procedure has been performed analyti-
cally avoiding more involved two-level computations. As a result, it can be seen as a member of the
LPS class of methods with no extra computational costs involved in the computation of the stabilized
terms. Also, the method was proved to be optimal convergence despite of its lack of consistency. We
conclude that the proposed LPS method is a competitive option to handle complex (eventually multi-
scale) flows, while remains a fair compromise between accuracy and computational cost as highlighted
by the three-dimensional numerical validations.
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