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Abstract

A new mixed variational formulation for the Navier-Stokes equations with constant density and
variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here.
Our approach employs a technique previously applied to the stationary Boussinesq problem and
to the Navier-Stokes equations with constant viscosity, which consists firstly of the introduction
of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure.
Next, by using an equivalent statement suggested by the incompressibility condition, the pressure
is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated
as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a
smaller space than usual, we overcome this difficulty by augmenting the variational formulation
with suitable Galerkin type terms arising from the constitutive and equilibrium equations, the
aforementioned relation defining the additional unknown, and the Dirichlet boundary condition.
The resulting augmented scheme is then written equivalently as a fixed point equation, and hence
the well-known Schauder and Banach theorems, combined with classical results on bijective mono-
tone operators, are applied to prove the unique solvability of the continuous and discrete systems.
No discrete inf-sup conditions are required for the well-posedness of the Galerin scheme, and hence
arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular,
given an integer k ≥ 0, piecewise polynomials of degree ≤ k for the gradient of velocity, Raviart-
Thomas spaces of order k for the pseudostress, and continuous piecewise polynomials of degree
≤ k + 1 for the velocity, constitute feasible choices. Finally, optimal a priori error estimates are
derived, and several numerical results illustrating the good performance of the augmented mixed
finite element method and confirming the theoretical rates of convergence are reported.
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1 Introduction

The utilization of pseudostress-based approaches for Newtonian and Non-Newtonian incompressible
flows has gained considerable attention in recent years due to its natural way of circumventing the
usual symmetry requirement of the stress-based formulations. In this direction, and specially in the
context of least-squares and augmented methods, two new procedures arised: the velocity-pressure-
pseudostress and velocity-pseudostress formulations (see, e.g. [5], [6], [22]). In particular, augmented
mixed finite element methods for both pseudostress-based formulations of the stationary Stokes equa-
tions, which extends analogue results for linear elasticity problems (see [23], [24], [28]), were introduced
and analyzed in [22]. In turn, the pure velocity-pseudostress formulation of the Stokes equations, that
is without augmenting or employing least-squares terms, was first studied in [7], whereas the utiliza-
tion of the stress variable, yielding the computation of the symmetric part of the velocity gradient
only, was considered in [34]. The corresponding augmented mixed finite element scheme for the
stress-based formulation of the Stokes problem, in which the vorticity is introduced as the Lagrange
multiplier taking care of the weak symmetry of the stress, was studied in [21]. Now, going back to
the pseudostress formulations, we remark that the approach from [7] was reconsidered in [30] where
further results, including the eventual incorporation of the pressure unknown and a posteriori error
analysis, were provided. Furthermore, the velocity-pressure-pseudostress formulation has also been
applied to nonlinear Stokes problems. In particular, a new mixed finite element method for a class of
models arising in quasi-Newtonian fluids, was introduced in [26]. The results in [26] were extended in
[15] to a setting in reflexive Banach spaces, thus allowing other nonlinear models such as the Carreau
law for viscoplastic flows. Moreover, the dual-mixed approach from [26] and [15] was reformulated in
[33] by restricting the space for the velocity gradient to that of trace-free tensors. As a consequence,
the pressure is eliminated and a three-field formulation with the pseudostress, the velocity, and the
velocity gradient as unknowns, is obtained. In addition, the approach from [30] was extended in [31]
to the class of nonlinear problems originally studied in [26] and [33]. For other contributions dealing
with stress or pseudostress based formulations in incompressible flows, including nonlinear and trans-
mission problems, and corresponding a posteriori error analyses, we refer to [16], [17], [20], [29], and
the references therein.

On the other hand, in connection with the utilization of diverse dual-mixed approaches for the
Navier-Stokes equations, we can mention [8], [9], [10], [18], [19], and [35]. In particular, the velocity-
pseudostress approach from [7], which employs the usual pseudostress tensor depending linearly on the
gradient of velocity and the pressure, is extended in [8] to the aforementined nonlinear problem. The
well-posedness of the continuous formulation is established through its equivalence with the classical
velocity-pressure setting, whereas the discrete scheme is analyzed by employing the theory from [4]
for the approximation of branches of nonsingular solutions. The corresponding velocity-pressure-
pseudostress formulation for the Navier-Stokes equations was developed later on in [10]. In turn, a
dual mixed formulation of the Navier-Stokes system with Dirichlet boundary conditions, in which the
gradient of the velocity is introduced as a new unknown, is proposed and analyzed in [19]. Quasi-
optimal a priori error estimates and an associated a posteriori error analysis are derived there. More
recently, a new dual-mixed method, in which the main unknowns are given by the velocity, its gradient,
and a modified nonlinear pseudostress tensor linking the usual stress and the convective term, has
been proposed in [35]. The Babuška-Brezzi theory and a fixed point argument are employed there
to prove the well-posedness of the continuous formulation. However, in order to satisfy the inf-sup
conditions required by the discrete analysis, new but more expensive finite element subspaces than
usual had to be introduced in [35]. Lately, the idea from [35] has been modified in [11] through the
introduction of a nonlinear pseudostress tensor linking now the pseudostress (instead of the stress) and
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the convective term, which, together with the velocity, constitute the only unknowns. The resulting
mixed formulation is then suitably augmented with Galerkin type terms arising from the constitutive
and equilibrium equations, and the Dirichlet boundary condition, so that the Banach fixed point
and Lax-Milgram theorems are applied to conclude the well-posedness of the continuous and discrete
formulations. The approach from [11] has been further extended in [14], where a new augmented
mixed-primal formulation for the stationary Boussinesq problem (cf. [37]) has been proposed and
analyzed. In addition to the methods and tools employed in [11], the analysis in [14] makes use of
the Babuška-Brezzi theory and the Brouwer fixed point theorem. Finally, within a slightly different
perspective, we can also refer to [12], where stabilized three-field (deviatoric stress, velocity, and
pressure) finite element formulations of the Navier-Stokes problem for quasi-Newtonian fluids, are
proposed and analyzed. Two stabilized schemes of Sub-Grid Scale type are introduced there, which
allow to use the same polynomial degree for the three unknowns, even in cases where the convection
component is dominant and the velocity gradients are high.

According to the above bibliographic discussion, the purpose of the present paper is to additionally
contribute in the direction suggested by [35], [11], and [14], by extending the analysis and results
from [11] to the Navier-Stokes equations with constant density and variable viscosity. Indeed, the
viscosity of many fluids, including on one hand biological ones such as blood, and on the other hand
polymers and molten metals, among others, may depend on the state variables. In particular, here we
are interested in developing a mixed finite element approach for those quasi-Newtonian fluids whose
viscosity is a nonlinear function of the magnitude of the gradient of velocity. For this purpose, we first
introduce the same modified pseudostress tensor from [11], and then, utilizing an equivalent statement
arising from the incompressibility condition, eliminate the pressure unknown. In addition, similarly
as in [35] and [29], the gradient of velocity is incorporated as an auxiliary unknown, which allows to
handle the nonlinear viscosity within the dual-mixed setting. In turn, the eventual difficulty arising
from the fact that the velocity actually lives in a smaller space, is overcomed by adopting the same
procedure from [11] (see also [31] and several previous references therein), that is by incorporating
suitable Galerkin type terms into the formulation. As a further consequence, and differently from [35],
no discrete inf-sup conditions are required for the well-posedness of the associated Galerkin scheme.
The rest of the paper is organized as follows. In Section 2 we first describe some standard notations and
functional spaces, and then introduce the model problem of interest and set the definite unknowns to be
considered in the variational formulation. Next, in Section 3 we derive the augmented mixed variational
formulation, introduce and analyze the equivalent fixed point setting, and conclude the corresponding
well-posedness result assuming sufficiently small data. The associated Galerkin scheme is then studied
in Section 4 by employing a discrete version of the fixed point strategy developed in Section 3. We
emphasize that no discrete inf-sup conditions are required for the discrete analysis, and therefore
arbitrary finite element subspaces can be employed. In addition, under a similar assumption on the
size of the data, the corresponding a priori error estimate is also deduced there by applying a suitable
Strang-type lemma for nonlinear problems. Finally, in Section 5 we present several numerical examples
illustrating the good performance of the augmented mixed finite element method and confirming the
theoretical rates of convergence.

2 The model problem

2.1 Preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3}, a given bounded domain with polyhedral boundary Γ, and
denote by ν the outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue
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spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ)
is the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. By M and M we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and
‖ · ‖, with no subscripts, will stand for the natural norm of either an element or an operator in any
product functional space. In turn, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the
gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)

i,j=1,n

, div v :=
n∑

j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑

i=1

τii, τ : ζ :=

n∑

i,j=1

τijζij , and τ d := τ −
1

n
tr(τ ) I .

Furthermore, we recall that

H(div; Ω) :=
{
τ ∈ L

2(Ω) : div τ ∈ L2(Ω)
}
,

equipped with the usual norm

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω ,

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows I stands for the
identity tensor in R := Rn×n, and | · | denotes the Euclidean norm in R := Rn.

2.2 The Navier-Stokes equations with variable viscosity

We consider the Navier-Stokes equations with constant density and variable viscosity, that is

−div
(
µ(|∇u|)∇u

)
+ (∇u)u + ∇p = f in Ω ,

divu = 0 in Ω ,

u = g on Γ ,

(2.1)

where the unknowns are the velocity u and the pressure p of a fluid occupying the region Ω. The
given data are a function µ : R+ −→ R describing the nonlinear viscosity, a volume force f ∈ L2(Ω),
and the boundary velocity g ∈ H1/2(Γ). Note that g must satisfy the compatibility condition

∫

Γ
g · ν = 0 , (2.2)

which comes from the incompressibility condition of the fluid, and that uniqueness of a pressure
solution of (2.1) is ensured in the space

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω
q = 0

}
.
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Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + s µ′(s) ≤ µ2 ∀ s ≥ 0 , (2.3)

which, according to the result provided by [32, Theorem 3.8], imply Lipschitz-continuity and strong
monotonicity of the nonlinear operator induced by µ. We will go back to this fact later on in Section
3. In addition, it is easy to see that the forthcoming analysis also applies to the slightly more general
case of a viscosity function acting on Ω× R+, that is µ : Ω× R+ −→ R. Some examples of nonlinear
µ are the following:

µ(s) := 2 +
1

1 + s
and µ(s) := α0 + α1(1 + s2)(β−2)/2 , (2.4)

where α0, α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corre-
sponds to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that
they both satisfy (2.3) with (µ1, µ2) = (2, 3) and (µ1, µ2) =

(
α0, α0 + α1

)
, respectively.

Next, following [11] and [14], we observe that the first equation in (2.1) can be rewritten as the
equilibrium equation

− divσ = f in Ω , (2.5)

where σ is the tensor unknown defined by

σ := µ(|∇u|)∇u − (u⊗ u) − p I in Ω . (2.6)

Moreover, it is straightforward to see that (2.6) together with the incompressibility condition are
equivalent to the pair of equations given by

µ(|∇u|)∇u − (u⊗ u)d = σd in Ω ,

p = −
1

n
tr(σ + u⊗ u ) in Ω .

(2.7)

In this way, eliminating the pressure unknown (which anyway can be approximated later on by the
postprocessed formula suggested by the second equation of (2.7)), we arrive, at first instance, at the
following system of equations with unknowns u and σ

µ(|∇u|)∇u − (u⊗ u)d = σd in Ω ,

−divσ = f in Ω ,

u = g on Γ ,
∫

Ω
tr(σ + u⊗ u) = 0 .

(2.8)

We remark here that the incompressibility of the fluid is implicitly present in the new constitutive
equation relating σ and u (first equation of (2.8)). In turn, the fact that the pressure p must belong
to L2

0(Ω) (as said before) is guaranteed by the equivalent statement given by the last equation of (2.8).

Finally, since we are interested in a mixed variational formulation of our nonlinear problem, and in
order to employ the integration by parts formula that is usually required by this approach, we also
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introduce the auxiliary unknown t := ∇u in Ω. Consequently, instead of (2.8), we consider from now
on the set of equations with unknowns t, u and σ, given by

∇u = t in Ω ,

µ(|t|) t − (u⊗ u)d = σd in Ω ,

−divσ = f in Ω ,

u = g on Γ ,
∫

Ω
tr(σ + u⊗ u) = 0 .

(2.9)

3 The continuous formulation

3.1 The augmented mixed formulation

We now proceed to derive a weak formulation of (2.9). We begin by recalling (see e.g. [3], [25]) that
there holds

H(div; Ω) = H0(div; Ω) ⊕ R I , (3.1)

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫

Ω
tr(ζ) = 0

}
.

Equivalently, each ζ ∈ H(div; Ω) can be decomposed as ζ = ζ0 + d I, with

ζ0 := ζ −

(
1

n |Ω|

∫

Ω
tr(ζ)

)
I ∈ H0(div; Ω) and d :=

1

n |Ω|

∫

Ω
tr(ζ) ∈ R . (3.2)

In particular, decomposing σ in (2.9) as σ = σ0 + c I, with σ0 ∈ H0(div; Ω), we deduce from (3.2)
and the last equation in (2.9) that c is given explicity in terms of u as

c = −
1

n |Ω|

∫

Ω
tr(u⊗ u) . (3.3)

In this way, since σd = σd

0 and divσ = divσ0, throughout the rest of the paper we rename σ0

as σ ∈ H0(div; Ω) and realize that the second and third equations of (2.9) remain unchanged. In
addition, thanks to the incompressibility condition and the first equation of (2.9), we can look for the
unknown t in the space

L
2
tr
(Ω) :=

{
s ∈ L

2(Ω) : tr s = 0
}
.

Thus, multiplying the first equation of (2.9) by a test function τ ∈ H(div; Ω), noting under the above
constraint for t that

∫
Ω τ : t =

∫
Ω τ d : t, and using the Dirichlet condition for u, we get

∫

Ω
τ d : t +

∫

Ω
u · div τ = 〈τν, g〉 ∀ τ ∈ H(div; Ω) , (3.4)

where 〈 · , · 〉 stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). Moreover, it is easy to
see that (3.4) is actually satisfied in advance for τ = d I with d ∈ R, since in this case all the terms
appearing there vanish. In particular, the compatibility condition (2.2) explains this fact for the
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boundary term. According to this and the decomposition (3.1), we deduce that (3.4) can be stated,
equivalently, as ∫

Ω
τ d : t +

∫

Ω
u · div τ = 〈τν, g〉 ∀ τ ∈ H0(div; Ω) .

Similarly, since the traces of t, (u⊗u)d, and σd all vanish, and since there also holds the decomposition
L
2(Ω) = L

2
tr
(Ω)⊕R I, we realize that the constitutive equation given by the second equation of (2.9)

needs to be tested only against s ∈ L
2
tr
(Ω), which yields

∫

Ω
µ(|t|) t : s −

∫

Ω
σd : s −

∫

Ω
(u⊗ u)d : s = 0 ∀ s ∈ L

2
tr
(Ω) .

In turn, the equilibrium equation given by the third equation of (2.9) is rewritten as

−

∫

Ω
v · divσ =

∫

Ω
f · v ∀v ∈ L2(Ω) .

We have thus arrived, at first instance, at the following weak formulation of (2.9): Find (t,σ) ∈
L
2
tr
(Ω)×H0(div; Ω), and u in a suitable space, such that

∫

Ω
µ(|t|) t : s −

∫

Ω
σd : s −

∫

Ω
(u⊗ u)d : s = 0 ∀ s ∈ L

2
tr
(Ω) ,

∫

Ω
τ d : t +

∫

Ω
u · div τ = 〈τν, g〉 ∀ τ ∈ H0(div; Ω) ,

−

∫

Ω
v · divσ =

∫

Ω
f · v ∀v ∈ L2(Ω) .

(3.5)

We continue our analysis by observing that the third term in the first row of the foregoing system
requires u to live in a smaller space than L2(Ω). In fact, by applying Cauchy-Schwarz and Hölder
inequalities, and then employing the compact (and hence continuous) injection ic of H1(Ω) into
L4(Ω) (see Rellich-Kondrachov compactness Theorem in [1, Theorem 6.3] or [38, Theorem 1.3.5]), and
denoting c1(Ω) := ‖ic‖

2, we find that there holds
∣∣∣∣
∫

Ω
(u⊗w)d : s

∣∣∣∣ ≤ ‖u‖L4(Ω) ‖w‖L4(Ω) ‖s‖0,Ω ≤ c1(Ω) ‖u‖1,Ω ‖w‖1,Ω ‖s‖0,Ω , (3.6)

for all u, w ∈ H1(Ω), s ∈ L2(Ω), which suggests to look for the unknown u in H1(Ω) and to restrict
the set of corresponding test functions v to the same space. Consequently, and in order to be able to
analyze the present variational formulation of (2.9), we now augment (3.5) through the incorporation
of the following redundant Galerkin terms:

κ1

∫

Ω

{
σd − µ(|t|) t + (u⊗ u)d

}
: τ d = 0 ∀ τ ∈ H0(div; Ω) , (3.7)

κ2

∫

Ω
divσ · div τ = −κ2

∫

Ω
f · div τ ∀ τ ∈ H0(div; Ω) , (3.8)

κ3

∫

Ω

{
∇u − t

}
: ∇v = 0 ∀v ∈ H1(Ω) , (3.9)

κ4

∫

Γ
u · v = κ4

∫

Γ
g · v ∀v ∈ H1(Ω) , (3.10)

where κ1, κ2, κ3, and κ4 are positive parameters to be specified later. We remark that the identities
required in (3.7) - (3.10) are nothing but the constitutive and the equilibrium equations concerning
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σ, along with the relation defining t as ∇u, and the Dirichlet condition for the velocity, but all them
tested differently from (3.5). We have thus arrived at the following augmented mixed formulation:
Find (t,σ,u) ∈ H := L

2
tr
(Ω)×H0(div; Ω)×H1(Ω) such that

[(
A + Bu

)
(t,σ,u) , (s, τ ,v)

]
=

[
F , (s, τ ,v)

]
∀ (s, τ ,v) ∈ H , (3.11)

where
[
·, ·
]
stands for the duality pairing between H′ and H, A : H −→ H′ is the nonlinear operator

[
A
(
t,σ,u) , (s, τ ,v)

]
:=

∫

Ω
µ(|t|) t : s −

∫

Ω
σd : s +

∫

Ω
τ d : t

+

∫

Ω
u · div τ −

∫

Ω
v · divσ + κ1

∫

Ω

{
σd − µ(|t|) t

}
: τ d

+ κ2

∫

Ω
divσ · div τ + κ3

∫

Ω

{
∇u− t

}
: ∇v + κ4

∫

Γ
u · v ,

(3.12)

F : H −→ R is the bounded linear functional

[
F , (s, τ ,v)

]
:= 〈τ ν, g〉 +

∫

Ω
f ·

{
v − κ2 div τ

}
+ κ4

∫

Γ
g · v , (3.13)

and for each z ∈ H1(Ω), Bz : H −→ H′ is the bounded linear operator

[
Bz(t,σ,u) , (s, τ ,v)

]
:=

∫

Ω
(z ⊗ u)d :

{
κ1 τ

d − s
}
, (3.14)

for all (t,σ,u), (s, τ ,v) ∈ H. The aforementioned boundedness properties will be confirmed below.
Indeed, in the forthcoming sections we study the well-posedness of (3.11) by applying some results on
fixed point theory.

3.2 A fixed point approach

We begin the solvability analysis of (3.11) by defining the operator T : H1(Ω) −→ H1(Ω) by

T(z) := u ∀ z ∈ H1(Ω) ,

where u is the third component of the unique solution (to be confirmed below) of the nonlinear
problem: Find (t,σ,u) ∈ H such that

[(
A + Bz

)
(t,σ,u) , (s, τ ,v)

]
=

[
F , (s, τ ,v)

]
∀ (s, τ ,v) ∈ H . (3.15)

It follows that our augmented mixed formulation (3.11) can be rewritten, equivalently, as the fixed
point problem: Find u ∈ H1(Ω) such that

T(u) = u . (3.16)

However, we remark in advance that the definition of T will make sense only in a closed ball of H1(Ω).

Now, in order to analyze the well-posedness of (3.15), we first collect a couple of useful inequalities.

Lemma 3.1 There exists c2(Ω) > 0 such that

c2(Ω) ‖τ 0‖
2
0,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀τ = τ 0 + cI ∈ H(div; Ω) .
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Proof. See [3, Proposition 3.1, Chapter IV]. �

Lemma 3.2 There exists c3(Ω) > 0 such that

|v|21,Ω + ‖v‖20,Γ ≥ c3(Ω) ‖v‖
2
1,Ω ∀v ∈ H1(Ω) .

Proof. See [22, Lemma 3.3]. �

In addition, we need to recall from [32] that, under the assumptions given by (2.3), the nonlinear
operator induced by µ is Lipschitz-continuous and strongly monotone. More precisely, we have the
following result.

Lemma 3.3 Let Lµ := max
{
µ2, 2µ2 − µ1

}
, where µ1 and µ2 are the bounds of µ given in (2.3).

Then for each r, s ∈ L
2(Ω) there holds

‖µ(|r|) r − µ(|s|) s‖0,Ω ≤ Lµ ‖r − s‖0,Ω , (3.17)

and ∫

Ω

{
µ(|r|) r − µ(|s|) s

}
:
(
r − s

)
≥ µ1 ‖r − s‖20,Ω . (3.18)

Proof. See [32, Theorem 3.8] for details. �

Then, the following lemma provides sufficient conditions under which the operator T is well-defined.

Lemma 3.4 Assume that κ1 ∈

(
0,

2δµ1

Lµ

)
and κ3 ∈

(
0, 2δ̃

(
µ1 −

κ1 Lµ

2δ

))
, with δ ∈

(
0,

2

Lµ

)
and

δ̃ ∈ (0, 2), and that κ2, κ4 > 0. Then, there exists ρ0 > 0 such that for each ρ ∈ (0, ρ0), the problem
(3.15) has a unique solution for each z ∈ H1(Ω) such that ‖z‖1,Ω ≤ ρ. Moreover, there exists a
constant cT > 0, independent of z and the data f and g, such that there holds

‖T(z)‖1,Ω = ‖u‖1,Ω ≤ ‖(t,σ,u)‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (3.19)

Proof. Given z ∈ H1(Ω), we first observe that A, Bz, and hence A+Bz, are Lipschitz-continuous. In
fact, using the Cauchy-Schwarz inequality, the Lipschitz-continuity of the operator induced by µ (cf.
(3.17) in Lemma 3.3), and the trace operator γ0 : H

1(Ω) −→ L2(Γ), we deduce from (3.12) that there
exists a positive constant LA, depending on Lµ, the parameters κi, i ∈ {1, ..., 4}, and ‖γ0‖, such that

[
A
(
t,σ,u)−A(r, ζ,w) , (s, τ ,v)

]
≤ LA ‖(t,σ,u)− (r, ζ,w)‖ ‖(s, τ ,v)‖ (3.20)

for all (t,σ,u), (r, ζ,w), (s, τ ,v) ∈ H. In turn, it readily follows from (3.6) and (3.14) that

∣∣∣
[
Bz(t,σ,u) , (s, τ ,v)

] ∣∣∣ ≤
(
κ21 + 1

)1/2
‖z‖L4(Ω) ‖u‖L4(Ω) ‖(s, τ )‖

≤ c1(Ω)
(
κ21 + 1

)1/2
‖z‖1,Ω ‖u‖1,Ω ‖(s, τ )‖

≤ c1(Ω)
(
κ21 + 1

)1/2
‖z‖1,Ω ‖(t,σ,u)‖ ‖(s, τ ,v)‖ ∀ (t,σ,u), (s, τ ,v) ∈ H ,

(3.21)

which, thanks to the linearity of Bz, and together with (3.20), confirm the announced continuity

properties. In particular, LA+c1(Ω)
(
κ21+1

)1/2
‖z‖1,Ω is the Lipschitz-continuity constant of A+Bz.
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Next, it is also clear from (3.12) that

[
A(r, ζ,w)−A(s, τ ,v) , (r, ζ,w)− (s, τ ,v)

]
=

∫

Ω

{
µ(|r|) r − µ(|s|) s

}
:
(
r − s

)

+ κ1 ‖(ζ − τ )d‖20,Ω − κ1

∫

Ω

{
µ(|r|) r − µ(|s|) s

}
: (ζ − τ )d + κ2 ‖div(ζ − τ )‖20,Ω

+ κ3 |w − v|21,Ω − κ3

∫

Ω
(r − s) : ∇(w − v) + κ4 ‖w − v‖20,Γ ,

which, using the Cauchy-Schwarz and Young inequalities, and the Lipschitz-continuity and strong
monotonicity properties of the operator induced by µ (cf. (3.17) and (3.18)), yields for any δ, δ̃ > 0,
and for all (r, ζ,w), (s, τ ,v) ∈ H,

[
A(r, ζ,w)−A(s, τ ,v), (r, ζ,w)− (s, τ ,v)

]
≥

{(
µ1 −

κ1 Lµ

2δ

)
−

κ3

2δ̃

}
‖r − s‖20,Ω

+ κ1

(
1−

Lµ δ

2

)
‖(ζ − τ )d‖20,Ω + κ2 ‖div(ζ − τ )‖20,Ω

+ κ3

(
1−

δ̃

2

)
|w − v|21,Ω + κ4 ‖w − v‖20,Γ .

(3.22)

Then, assuming the stipulated hypotheses on δ, κ1, δ̃, κ3, κ2, and κ4, and applying Lemmas 3.1
and 3.2, we can define the positive constants

α0(Ω) :=

(
µ1 −

κ1 Lµ

2δ

)
−

κ3

2δ̃
, α1(Ω) := min

{
κ1

(
1−

Lµ δ

2

)
,
κ2
2

}
,

α2(Ω) := min
{
α1(Ω) c2(Ω) ,

κ2
2

}
, and α3(Ω) := c3(Ω) min

{
κ3

(
1−

δ̃

2

)
, κ4

}
,

which allow us to deduce from (3.22) that

[
A(r, ζ,w)−A(s, τ ,v) , (r, ζ,w)− (s, τ ,v)

]
≥ α(Ω) ‖(r, ζ,w)− (s, τ ,v)‖2 , (3.23)

for all (r, ζ,w), (s, τ ,v) ∈ H, where

α(Ω) := min
{
α0(Ω) , α2(Ω) , α3(Ω)

}

is the strong monotonicity constant of A. Moreover, by combining (3.21) and (3.23), we obtain

[(
A+Bz

)
(r, ζ,w)−

(
A+Bz

)
(s, τ ,v) , (r, ζ,w)− (s, τ ,v)

]

≥
{
α(Ω)− c1(Ω) (κ

2
1 + 1)1/2 ‖z‖1,Ω

}
‖(r, ζ,w)− (s, τ ,v)‖2

≥
α(Ω)

2
‖(r, ζ,w)− (s, τ ,v)‖2 ∀ (r, ζ,w), (s, τ ,v) ∈ H ,

(3.24)

provided c1(Ω) (κ
2
1 + 1)1/2 ‖z‖1,Ω ≤

α(Ω)

2
. Consequently, the strong monotonicity of the nonlinear

operator A+Bz is ensured with the constant
α(Ω)

2
, independent of z, by requiring ‖z‖1,Ω ≤ ρ0, with

ρ0 :=
α(Ω)

2 c1(Ω) (κ21 + 1)1/2
. (3.25)
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Now, concerning the linear functional F, we readily find from (3.13), by using Cauchy-Schwarz’s
inequality and the trace theorems in H(div; Ω) and H1(Ω), whose boundedness constants are given
by 1 and ‖γ0‖, respectively, that F ∈ H′ with

‖F‖ ≤ MT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
,

where MT := max
{
(1+ κ22)

1/2 , κ4 ‖γ0‖
}
. In this way, having established that the operator A+Bz

is Lipschitz-continuous and strongly monotone, and knowing that F ∈ H′, a classical result on the
bijectivity of monotone operators (see, e.g. [36, Theorem 3.3.23]) allows us to conclude that there
exists a unique solution (t,σ,u) ∈ H of (3.15). Finally, by applying (3.24) with (r, ζ,w) = (t,σ,u)
and (s, τ ,v) = (0,0,0), noting that (A + Bz)(0,0,0) is the null functional, and performing simple

algebraic manipulations, we arrive at (3.19) with the positive constant cT :=
2MT

α(Ω)
, which is clearly

independent of z. �

We end this section by remarking that the constant α(Ω) yielding the strong monotonicity of both
A and A + Bz can be maximized by taking the parameters δ, κ1, δ̃, and κ3 as the middle points
of their feasible ranges, and by choosing κ2 and κ4 so that they maximize the minima defining α1(Ω)
and α3(Ω), respectively. More precisely, we simply take

δ =
1

Lµ
, κ1 =

δ µ1

Lµ
=

µ1

L2
µ

, δ̃ = 1 , κ3 = δ̃
(
µ1 −

κ1 Lµ

2δ

)
=

µ1

2
,

κ2 = 2κ1

(
1−

Lµ δ

2

)
= κ1 =

µ1

L2
µ

, and κ4 = κ3

(
1−

δ̃

2

)
=

κ3
2

=
µ1

4
,

(3.26)

which yields

α0(Ω) =
µ1

4
, α1(Ω) =

µ1

2L2
µ

, α2(Ω) = min
{
c2(Ω), 1

} µ1

2L2
µ

, α3(Ω) = c3(Ω)
µ1

4
,

and hence

α(Ω) = min

{
min

{
c3(Ω), 1

} µ1

4
, min

{
c2(Ω), 1

} µ1

2L2
µ

}
.

The explicit values of the stabilization parameters κi, i ∈ {1, ..., 4}, given in (3.26), will be employed
in Section 5 for the corresponding numerical experiments.

3.3 Solvability analysis of the fixed point equation

We now aim to establish the existence of a unique fixed point of the operator T. To this end, we show
next that it suffices to verify the hypotheses of the Schauder fixed point theorem since the uniqueness
will follow from the same estimates obtained through that analysis. For sake of completeness, we
recall that the aforementioned theorem is stated as follows (see, e.g. [13, Theorem 9.12-1(b)]).

Theorem 3.5 Let W be a closed and convex subset of a Banach space X, and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed point.

We begin the analysis with the following straightforward consequence of Lemma 3.4.
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Lemma 3.6 Let ρ ∈ (0, ρ0), with ρ0 given by (3.25) (cf. proof of Lemma 3.4), let Wρ be the closed

ball defined by Wρ :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ρ

}
, and assume that the data satisfy

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ρ , (3.27)

with cT given at the end of the proof of Lemma 3.4. Then there holds T(Wρ) ⊆ Wρ.

In turn, the following lemma establishes a key estimate to derive next the required continuity and
compactness properties of the operator T.

Lemma 3.7 Let ρ ∈ (0, ρ0), with ρ0 given by (3.25), and let Wρ :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ρ

}
.

Then there exists a positive constant CT, depending on κ1, ‖ic‖, and α(Ω), such that

‖T(z)−T(z̃)‖1,Ω ≤ CT ‖T(z̃)‖1,Ω ‖z − z̃‖L4(Ω) ∀ z, z̃ ∈ Wρ . (3.28)

Proof. Given ρ as indicated, and z, z̃ ∈ Wρ, we let u = T(z) and ũ = T(z̃) be the third components
of the corresponding solutions of (3.15), that is

[(
A + Bz

)
(t,σ,u) , (s, τ ,v)

]
=

[
F , (s, τ ,v)

]
∀ (s, τ ,v) ∈ H , (3.29)

and [(
A + Bz̃

)
(̃t, σ̃, ũ) , (s, τ ,v)

]
=

[
F , (s, τ ,v)

]
∀ (s, τ ,v) ∈ H . (3.30)

Then, applying the strong monotonicity of A+Bz (cf. (3.24)), we find that

α(Ω)

2
‖(t,σ,u)− (̃t, σ̃, ũ)‖2 ≤

[(
A + Bz

)
(t,σ,u)−

(
A + Bz

)
(̃t, σ̃, ũ) , (t,σ,u)− (̃t, σ̃, ũ)

]
,

which, adding and substracting Bz̃ (̃t, σ̃, ũ), and then employing (3.29) and (3.30), yields

α(Ω)

2
‖(t,σ,u)− (̃t, σ̃, ũ)‖2 ≤

[
Bz̃−z (̃t, σ̃, ũ) , (t,σ,u)− (̃t, σ̃, ũ)

]
.

In this way, applying the first estimate in (3.21) to the right hand side of the foregoing inequality, and
then bounding ‖ũ‖L4(Ω) by ‖ic‖ ‖ũ‖1,Ω, we deduce, after a minor simplification, that

‖(t,σ,u)− (̃t, σ̃, ũ)‖ ≤
2 (κ21 + 1)1/2 ‖ic‖

α(Ω)
‖ũ‖1,Ω ‖z − z̃‖L4(Ω) ,

which certainly implies (3.28) with CT :=
2 (κ21 + 1)1/2 ‖ic‖

α(Ω)
and completes the proof. �

We are now in a position to establish the announced properties of the operator T.

Lemma 3.8 Given ρ ∈ (0, ρ0), with ρ0 defined by (3.25), we let Wρ :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ρ

}
,

and assume that the data satisfy (3.27) (cf. Lemma 3.6). Then, T : Wρ −→ Wρ is continuous and

T(Wρ) is compact.
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Proof. It follows straightforwardly from (3.28) and the continuity of ic : H
1(Ω) −→ L4(Ω) that

‖T(z)−T(z̃)‖1,Ω ≤ CT ‖ic‖ ‖T(z̃)‖1,Ω ‖z − z̃‖1,Ω ∀ z, z̃ ∈ Wρ , (3.31)

which proves the continuity of T. Now, given a sequence {zk}k∈N of Wρ, which is clearly bounded,

there exists a subsequence {z
(1)
k }k∈N ⊆ {zk}k∈N and z ∈ H1(Ω) such that z

(1)
k

w
−→ z in H1(Ω). In

this way, thanks to the compactness of ic, we deduce that z
(1)
k −→ z in L4(Ω), which, combined with

(3.28), implies that T(z
(1)
k ) −→ T(z) in H1(Ω). This proves that T(Wρ) is compact and finishes the

proof. �

The main result of this section is stated next.

Theorem 3.9 Suppose that the parameters κi, i ∈ {1, ..., 4}, satisfy the conditions required by Lemma

3.4. In addition, given ρ ∈ (0, ρ0), with ρ0 defined by (3.25), we let Wρ :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ρ

}
,

and assume that the data satisfy (3.27) (cf. Lemma 3.6). Then, the augmented mixed formulation
(3.11) has a unique solution (t,σ,u) ∈ H with u ∈ Wρ, and there holds

‖(t,σ,u)‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (3.32)

Proof. The equivalence between (3.11) and the fixed point equation (3.16), together with Lemmas 3.6
and 3.8, confirms the existence of solution for (3.11) as a direct application of the Schauder fixed point
theorem (cf. Theorem 3.5). In addition, it is clear that the estimate (3.32) follows straightforwardly
from (3.19). On the other hand, a second look at the inequality (3.31) and the definitions of the
constants ρ0 (cf. (3.25)) and CT (at the end of the proof of Lemma 3.7), gives

‖T(z)−T(z̃)‖1,Ω ≤
2 (κ21 + 1)1/2 c1(Ω)

α(Ω)
‖T(z̃)‖1,Ω ‖z − z̃‖1,Ω =

1

ρ0
‖T(z̃)‖1,Ω ‖z − z̃‖1,Ω ,

which, thanks again to (3.19), and using our assumption (3.27), implies

‖T(z)−T(z̃)‖1,Ω ≤
1

ρ0
cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
‖z − z̃‖1,Ω ≤

ρ

ρ0
‖z − z̃‖1,Ω

for all z, z̃ ∈ Wρ. The foregoing inequality proves that actually, under the hypothesis (3.27), the
operator T : Wρ −→ Wρ becomes a contraction, and hence it has a unique fixed point. �

Certainly, after seeing the way we proved the previous theorem, we realize that we could have simply
applied the Banach fixed point theorem instead of the Schauder’s one. However, we prefer to keep the
above analysis as it is since, being much more general, it provides a quite useful logical sequence for
studying similar and related problems. Indeed, in most of the solvability analysis of more involved fixed
point equations, a second condition on the data, different from the one ensuring that the corresponding
operator maps a given closed and convex domain into itself, is required for the uniqueness of solution
(see, e.g. [2] for a recent work in this direction concerning a coupled flow-transport problem). The
fact that the same condition on the data guarantees both existence and uniqueness of solution might
very well be a particular feature of the present problem and its associated fixed point operator T.

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the augmented mixed formulation (3.11), analyze
its solvability by employing a discrete version of the fixed point strategy developed in Section 3.2, and
finally derive the corresponding a priori error estimate by applying a suitable Strang-type lemma.
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We begin by taking arbitrary finite dimensional subspaces H
t

h, H
σ

h and Hu

h of the continuous spaces
L
2
tr
(Ω), H0(div; Ω), and H1(Ω), respectively. Hereafter, h denotes the size of a regular triangulation

Th of Ω made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK , that is

h := max
{
hK : K ∈ Th

}
. Then, the Galerkin scheme associated with our problem (3.11) reads:

Find (th,σh,uh) ∈ Hh := H
t

h ×H
σ

h ×Hu

h such that
[(
A + Buh

)
(th,σh,uh) , (sh, τ h,vh)

]
=

[
F , (sh, τ h,vh)

]
∀ (sh, τ h,vh) ∈ Hh . (4.1)

Next, we let Th : Hu

h −→ Hu

h be the discrete operator defined by

Th(zh) := uh ∀ zh ∈ Hu

h ,

where uh is the third component of the unique solution (to be confirmed below) of the discrete problem:
Find (th,σh,uh) ∈ Hh such that

[(
A + Bzh

)
(th,σh,uh) , (sh, τ h,vh)

]
=

[
F , (sh, τ h,vh)

]
∀ (sh, τ h,vh) ∈ Hh . (4.2)

Then, similarly as for the continuous case, it is easy to see that our Galerkin scheme (4.1) can be
rewritten, equivalently, as the fixed point equation: Find uh ∈ Hu

h such that

Th(uh) = uh . (4.3)

Now, it is not difficult to see that the arguments employed in the proof of Lemma 3.4 can also be
applied to the present discrete setting. In particular, for each zh ∈ Hu

h the nonlinear operatorA+Bzh
:

Hh −→ H′
h becomes Lipschitz-continuous as well with constant LA + c1(Ω)

(
κ21 + 1

)1/2
‖zh‖1,Ω.

Moreover, under the same feasible ranges stipulated in Lemma 3.4 for the stabilization parameters
and the given zh ∈ Hu

h (instead of z ∈ H1(Ω)), one finds that A+Bzh
: Hh −→ H′

h becomes strongly

monotone with the same constant
α(Ω)

2
provided in (3.24). Consequently, the result on monotone

operators given by [36, Theorem 3.3.23] implies now the following lemma.

Lemma 4.1 Assume that κ1 ∈

(
0,

2δµ1

Lµ

)
and κ3 ∈

(
0, 2δ̃

(
µ1 −

κ1 Lµ

2δ

))
, with δ ∈

(
0,

2

Lµ

)
and

δ̃ ∈ (0, 2), and that κ2, κ4 > 0. Then, for each ρ ∈ (0, ρ0), with ρ0 given by (3.25), and for each
zh ∈ Hu

h such that ‖zh‖1,Ω ≤ ρ, the problem (4.2) has a unique solution (th,σh,uh) ∈ Hh. Moreover,
with the same constant cT > 0 from Lemma 3.4, which is independent of zh and the data f and g,
there holds

‖Th(zh)‖1,Ω = ‖uh‖1,Ω ≤ ‖(th,σh,uh)‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (4.4)

Moreover, by utilizing the discrete analogue of the analysis developed in Section 3.3, we are able to
derive the following main result concerning the Galerkin scheme (4.1).

Theorem 4.2 Suppose that the parameters κi, i ∈ {1, ..., 4}, satisfy the conditions required by Lemma

4.1. In addition, given ρ ∈ (0, ρ0), with ρ0 defined by (3.25), we let W h
ρ :=

{
zh ∈ Hu

h : ‖zh‖1,Ω ≤ ρ
}
,

and assume that the data satisfy (3.27) (cf. Lemma 3.6), that is

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ρ . (4.5)

Then, (4.1) has a unique solution (th,σh,uh) ∈ Hh with uh ∈ W h
ρ , and there holds

‖(th,σh,uh)‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (4.6)
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Proof. We first observe, thanks to (4.4), that the assumption (4.5) guarantees that Th(W
h
ρ ) ⊆ W h

ρ .
Next, proceeding as in the proof of Lemma 3.7, that is applying the strong monotonicity of A+Bzh

:
Hh −→ H′

h for each zh ∈ W h
ρ , and using again the boundedness of the compact injection ic (as at the

beginning of the proof of Lemma 3.8), we find that

‖Th(zh)−Th(z̃h)‖1,Ω ≤ CT ‖ic‖ ‖Th(z̃h)‖1,Ω ‖zh − z̃h‖1,Ω ∀ zh, z̃h ∈ W h
ρ ,

where CT > 0 is the constant introduced in the first aforementioned lemma. Then, employing the
same arguments of the proof of Theorem 3.9, in particular using again (4.5), we deduce from the
foregoing inequality that

‖Th(zh)−Th(z̃h)‖1,Ω ≤
ρ

ρ0
‖zh − z̃h‖1,Ω ∀ zh, z̃h ∈ W h

ρ ,

which confirms that Th : W h
ρ −→ W h

ρ is also a contraction. In this way, the equivalence between
(4.1) and the fixed point equation (4.3) implies the existence of a unique solution of (4.1) as a simple
application of the Banach fixed point theorem. In turn, the a priori estimate (4.6) follows directly
from (4.4). �

Our next goal is to derive an a priori error estimate for our Galerkin scheme (4.1). More precisely,
given ~t := (t,σ,u) ∈ H, with u ∈ Wρ, and ~th := (th,σh,uh) ∈ Hh, with uh ∈ W h

ρ , solutions of the
problems (3.11) and (4.1), respectively, we are interested in obtaining an upper bound for

‖~t−~th‖ = ‖(t,σ,u)− (th,σh,uh)‖ .

To this end, we now recall from [27] (see also [2, Lemma 5.1]) a Strang-type lemma that will be utilized
in our subsequent analysis.

Lemma 4.3 Let H be a Hilbert space, F ∈ H′, and S : H → H′ a nonlinear operator. In addition,
let {Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N consider a
nonlinear operator Sn : Hn → H′

n and a functional Fn ∈ H′
n. Assume that the family {S} ∪ {Sn}n∈N

is uniformly Lipschitz continuous and strongly monotone with constants ΛLC and ΛSM, respectively. In
turn, let u ∈ H and un ∈ Hn such that

[S(u), v] = [F, v] ∀ v ∈ H and [Sn(un), vn] = [Fn, vn] ∀ vn ∈ Hn ,

where [·, ·] denotes the duality pairings of both H′×H and H′
n×Hn. Then for each n ∈ N there holds

‖u− un‖H ≤ ΛST





sup
wn∈Hn

wn 6=0

∣∣ [F, wn]− [Fn, wn]
∣∣

‖wn‖H

+ inf
vn∈Hn

vn 6=0


‖u− vn‖H + sup

wn∈Hn

wn 6=0

∣∣ [S(vn), wn]− [Sn(vn), wn]
∣∣

‖wn‖H








,

(4.7)

with ΛST := Λ−1
SM

max
{
1,ΛSM + ΛLC

}
.

Proof. It is a particular case of [27, Theorem 6.4]. �

In what follows we apply Lemma 4.3 to the context given by (3.11) and (4.1), which are rewritten
as ~t ∈ H and ~th ∈ Hh, such that

[(
A+Bu

)
(~t),~s

]
=

[
F,~s

]
∀~s ∈ H , (4.8)
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and [(
A+Buh

)
(~th),~sh

]
=

[
F,~sh

]
∀~sh ∈ Hh . (4.9)

We first notice, thanks to Theorems 3.9 and 4.2, that the Lipschitz-continuity constants of A + Bu

and A+Buh
, which are given, respectively, by LA+c1(Ω)

(
κ21+1

)1/2
‖u‖1,Ω (cf. proof of Lemma 3.4)

and LA + c1(Ω)
(
κ21 +1

)1/2
‖uh‖1,Ω (cf. remarks right before Lemma 4.1), can be bounded uniformly

by the constant

ΛLC := LA + c1(Ω)
(
κ21 + 1

)1/2
ρ0 = LA +

α(Ω)

2
.

In turn, it is quite clear from (3.24) and, again, the remarks right before Lemma 4.1, that the strong
monotonicity constant of these same nonlinear operators is given by

ΛSM :=
α(Ω)

2
.

Consequently, we can prove the following result.

Theorem 4.4 Assume that the data f and g are such that

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤

ρ

2 max
{
1, LA + α(Ω)

} . (4.10)

Then there exists a positive constant C, depending only on LA and α(Ω), such that

‖~t−~th‖ ≤ C dist(~t,Hh) . (4.11)

Proof. A straightforward application of (4.7) to (4.8) - (4.9) gives

‖~t−~th‖ ≤ ΛST inf
~rh∈Hh





‖~t− ~rh‖ + sup
~sh∈Hh

~sh 6=0

∣∣[(A+Bu

)
(~rh),~sh

]
−

[(
A+Buh

)
(~rh),~sh

]∣∣
‖~sh‖





, (4.12)

where

ΛST := Λ−1
SM

max
{
1,ΛSM + ΛLC

}
=

2

α(Ω)
max

{
1, LA + α(Ω)

}
. (4.13)

Then, applying the estimate for Bz given by (3.21), adding and substracting ~t, and bounding both
‖u‖1,Ω and ‖uh‖1,Ω by ρ0 at the first term, we find that

∣∣∣
[(
A+Bu

)
(~rh),~sh

]
−

[(
A+Buh

)
(~rh),~sh

]∣∣∣ =
∣∣∣
[
Bu−uh

(~rh),~sh
]∣∣∣

≤ c1(Ω) (κ
2
1 + 1)1/2 ‖u− uh‖1,Ω

{
‖~t− ~rh‖ + ‖~t‖

}
‖~sh‖

≤
{
2 c1(Ω) (κ

2
1 + 1)1/2 ρ0 ‖~t− ~rh‖ + c1(Ω) (κ

2
1 + 1)1/2 ‖~t‖ ‖u− uh‖1,Ω

}
‖~sh‖

=
{
α(Ω) ‖~t− ~rh‖ + c1(Ω) (κ

2
1 + 1)1/2 ‖~t‖ ‖u− uh‖1,Ω

}
‖~sh‖ ,

which, replaced back into (4.12), taking infimum, and using that ‖u− uh‖1,Ω ≤ ‖~t−~th‖, yields

‖~t−~th‖ ≤ ΛST

{
1 + α(Ω)

}
dist(~t,Hh) + ΛST c1(Ω) (κ

2
1 + 1)1/2 ‖~t‖ ‖~t−~th‖ . (4.14)
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Finally, recalling from (3.32) that ‖~t‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
, employing our assumption

(4.10), and replacing the expression of ΛST given by (4.13), we obtain that

ΛST c1(Ω) (κ
2
1 + 1)1/2 ‖~t‖ ≤

1

2
,

which, together with (4.14), implies (4.11) with C = 2ΛST

{
1+α(Ω)

}
, thus completing the proof. �

Having established the previous theorem, we now aim to estimate the error for the postprocessed
pressure. In fact, according to the second equation of (2.7), and (3.3), we define our discrete approx-
imation of the pressure as

ph := −
1

n
tr
{
σh + chI + (uh ⊗ uh)

}
in Ω , with ch := −

1

n |Ω|

∫

Ω
tr(uh ⊗ uh) , (4.15)

which yields

p− ph =
1

n
tr
{(

σh − σ
)
+

(
uh ⊗ uh − u⊗ u

)}
+ (ch − c) ,

and thus, applying the Cauchy-Schwarz inequality, we first find that

‖p− ph‖0,Ω ≤ Ĉ
{
‖σ − σh‖0,Ω + ‖uh ⊗ uh − u⊗ u‖0,Ω + |c− ch|

}
,

where Ĉ > 0 depends on n and |Ω|. Next, bearing in mind the expression for c given by (3.3),
decomposing

uh ⊗ uh − u⊗ u =
(
uh − u

)
⊗ uh + u⊗

(
uh − u

)
,

and employing the triangle and Hölder inequalities, the compact embedding ic : H1(Ω) −→ L4(Ω),
and the a priori bounds for ‖u‖1,Ω and ‖uh‖1,Ω (cf. (3.32) in Theorem 3.9 and (4.6) in Theorem 4.2),
we deduce from the foregoing equations that there exists a constant C > 0, depending on n, |Ω|,
c1(Ω) = ‖ic‖

2, and the data f and g, but independent of h, such that

‖p− ph‖0,Ω ≤ C
{
‖σ − σh‖div;Ω + ‖u− uh‖1,Ω

}
. (4.16)

We end this section by defining specific finite element subspaces H
t

h, H
σ

h and Hu

h , and providing
the corresponding rate of convergence of the associated Galerkin scheme (4.1). In what follows, given
an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes the space of polynomial functions on S of degree
≤ k. In addition, according to the notation described in Section 2.1, we set Pk(S) := [Pk(S)]

n and
Pk(S) := [Pk(S)]

n×n. Similarly, C(Ω) = [C(Ω)]n. Then, we introduce the finite element subspaces
approximating the unknowns t and u as the piecewise polynomial tensors of degree ≤ k, and the
continuous piecewise polynomial vectors of degree ≤ k + 1, respectively, that is

H
t

h :=
{
sh ∈ L

2
tr
(Ω) : sh

∣∣∣
K

∈ Pk(K) ∀K ∈ Th

}
, (4.17)

and
Hu

h :=
{
vh ∈ C(Ω) : vh

∣∣∣
K

∈ Pk+1(K) ∀K ∈ Th

}
. (4.18)

In turn, for each K ∈ Th we set the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x ,
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where x is a generic vector in Rn, and define the finite element subspace approximating σ as the
global Raviart–Thomas space of order k, that is

H
σ

h :=
{
τ h ∈ H0(div; Ω) : ct τ

∣∣∣
K

∈ RTk(K) , ∀ c ∈ Rn ∀K ∈ Th

}
. (4.19)

The approximation properties of the above finite element subspaces are as follows (cf. [3], [25]):

(APt

h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each r ∈
H

s(Ω) ∩ L
2
tr
(Ω), there holds

dist(r,Ht

h) ≤ C hs ‖r‖s,Ω .

(APσ

h ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each ζ ∈
H

s(Ω) ∩ H0(div; Ω) with div ζ ∈ Hs(Ω), there holds

dist(ζ,Hσ

h ) ≤ C hs
{
‖ζ‖s,Ω + ‖div ζ‖s,Ω

}
.

(APu

h ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each w ∈
Hs+1(Ω), there holds

dist(w,Hu

h ) ≤ C hs ‖w‖s+1,Ω .

We are now in a position to establish the rate of convergence of the Galerkin scheme (4.1) when
the specific finite element subspaces given by (4.17), (4.18), and (4.19), are utilized. We notice here
that the main assumption on the data guaranteeing the well-posedness of the continuous and discrete
schemes, which is given by (3.27), follows from (4.10), and hence it suffices to assume the latter only.

Theorem 4.5 Besides the hypotheses of Lemma 4.1 (or Lemma 3.4) and Theorem 4.4, assume that
there exists s > 0 such that t ∈ H

s(Ω), σ ∈ H
s(Ω), divσ ∈ Hs(Ω), and u ∈ Hs+1(Ω), and that

the finite element subspaces are defined by (4.17) – (4.19). Then, there exists C > 0, independent of
h, such that for each h > 0 there holds

‖~t−~th‖ + ‖p− ph‖0,Ω ≤ C hmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s+1,Ω

}
.

Proof. It follows from the Céa estimate (4.11), the upper bound given by (4.16), and the approximation
properties (APt

h), (APσ

h ), and (APu

h ). �

5 Numerical results

In this section we present two examples illustrating the performance of our augmented mixed finite
element scheme (4.1), and illustrating the rates of convergence provided by Theorem 4.5. In agreement
with (3.26), both tests of this section use the stabilization parameters κ1 = µ1/L

2
µ, with Lµ :=

max
{
µ2, 2µ2 − µ1

}
, κ2 = κ1, κ3 = µ1/2, κ4 = µ1/4. In addition, the null mean value of trσh over Ω

is fixed via a penalization strategy. A Newton algorithm with a tolerance of 1E-6 on the energy norm
of the residual has been employed to linearize (4.1).

In our first numerical test we take the unit square as computational domain Ω = (0, 1)2, set the
nonlinear viscosity to

µ(s) := 2 +
1

1 + s
for s ≥ 0,
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dof h e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) iter

Augmented P0 − RT0 −P1 scheme

74 0.707107 1.507573 – 15.46291 – 2.138123 – 1.474362 – 4
152 0.471405 1.032025 0.934676 10.79214 0.886945 1.544828 0.801588 1.102846 0.716045 4
392 0.282843 0.627383 0.974346 6.642553 0.950075 0.966928 0.917227 0.713515 0.852435 5
1208 0.157135 0.349744 0.994165 3.738210 0.978058 0.545122 0.975038 0.407074 0.954784 5
4184 0.083189 0.185294 0.998851 1.992707 0.989188 0.289828 0.993290 0.216638 0.991792 4
15512 0.042855 0.095469 0.999769 1.030370 0.994395 0.149479 0.998252 0.111504 1.001313 4
59672 0.021757 0.048470 0.999951 0.524023 0.997430 0.075912 0.999553 0.056521 1.002313 4
234008 0.010963 0.024423 0.999989 0.264225 0.998993 0.038253 0.999887 0.028448 1.001622 3

Augmented P1 − RT1 −P2 scheme

173 0.707107 0.665329 – 5.998455 – 0.703040 – 0.346281 – 3
350 0.471405 0.280306 1.660753 2.447761 1.760695 0.357030 1.658535 0.151825 1.872231 4
890 0.282843 0.095558 2.106678 1.047274 1.661981 0.123718 2.074711 0.054464 2.006908 4
2714 0.157135 0.028280 2.071445 0.410290 1.794257 0.037631 2.024841 0.015867 2.098233 4
9338 0.083189 0.007798 2.025738 0.149803 1.984209 0.010526 2.003165 0.004333 2.040821 5
34490 0.042855 0.002059 2.007674 0.051099 1.921534 0.002797 1.997942 0.001143 2.009621 5
132410 0.021757 0.000530 2.002121 0.014300 1.985516 0.000722 1.997888 0.000294 2.001882 5
518714 0.010963 0.000121 2.001908 0.036428 1.993961 0.000163 1.999397 0.000078 1.999572 4

Table 1: Example 1: Convergence history and Newton iteration count for the mixed–primal Pk −
RTk −Pk+1 approximations of the coupled problem and convergence of the Pk−approximation of the
postprocessed pressure field. Values for k = 0, 1.

and construct a series of successively refined triangulations. The accuracy of the method is assessed
by choosing the following smooth manufactured exact solution to (3.11)

p = x21 − x22, u =

(
− cos(πx1) sin(πx2)
sin(πx1) cos(πx2)

)
, t = ∇u ,

σ = H0(div; Ω)–component of µ(|∇u|)∇u− (u⊗ u)− pI ,

and the load function f along with the boundary data g are chosen according to these solutions. In
turn, errors and convergence rates are defined as usual

e(t) = ‖t− th‖0,Ω , e(σ) = ‖σ − σh‖div;Ω , e(u) = ‖u− uh‖1,Ω ,

e(p) = ‖p− ph‖0,Ω , r(·) =
log(e(·)/ê(·))

log(h/ĥ)
,

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ.

From Table 1 we observe that as the mesh is refined, optimal convergences are attained for the
velocity gradient t, the pseudostress tensor σ and the velocity u, that is, the proposed augmented
method achieves O(hk+1) convergence (with k = 0 and k = 1) for all fields in their relevant norms
(as predicted by Theorem 4.5), and around five Newton iterations are required to reach the desired
tolerance. Of course, for a fixed mesh, the augmented method corresponding to k = 1 delivers smaller
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errors than those generated with k = 0. All components of the numerical solutions obtained at the
finest level are portrayed in Figure 1. At each iteration the resulting linear systems were solved with
the multifrontal direct solver MUMPS.

Figure 1: Test 1: P1 − RT1 − P2 approximation of velocity gradient components (top panels), pseu-
dostress components (centre panels), and viscosity, velocity components with vector directions, and
postprocessed pressure field (bottom row).

Next, in order to assess the feasibility of the 3D implementation, we carry out the lid driven cavity
test on the cube Ω = (0, 1)3. The external force is set to zero and the three-dimensional flow patterns
are determined by the boundary data only:

g :=

{
0 on the side walls and bottom of the cavity,(
16x1(1− x1)x2(1− x2), 0, 0

)T
on the top lid.

The viscosity now follows a Carreau law (cf. (2.4)) with α0 = 0.002, α1 = 0.1, and β = 1, that is

µ(s) := 0.002 + 0.1(1 + s2)−1/2 for s ≥ 0 ,

which yields a Reynolds number between 10 and 500, and we construct an unstructured tetrahedral
mesh of 35937 vertices and 196608 elements representing a total of 2898755 degrees of freedom for the
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lowest-order family k = 0. The approximate solutions are depicted in Figure 2. Here a BICGSTAB
method with left Schur complement preconditionning was used to solve the resulting linear systems,
and six Newton steps were needed to achieve the given tolerance.

Figure 2: Test 2: numerical solutions (diagonal strain and pseudostress components, viscosity and
velocity streamlines and vector directions) for the lid cavity benchmark using P0 −RT0 −P1 approx-
imations of velocity gradient, pseudostress and velocity.
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