Enlaces de Interés
- ORCID: 0000-0002-4015-6662
 
Cursos que Imparte
Pregrado
- 
Cálculo 1, 2, y 3
 - 
Cálculo Numérico
 
Postgrado
- 
Análisis Funcional
 - 
Cálculo Científico
 - 
Teoría de Elementos Finitos
 - Teoría de Operadores Lineales
 
Área de Investigación
- Análisis Numérico
 
Publicaciones
| 
 [ 14 ]  | 
 R. Araya, C. Harder, A.H. Poza, and F. Valentin: Multiscale hybrid-mixed methods for the Stokes and Brinkman equations-a priori analysis. SIAM Journal on Numerical Analysis, vol. 63, (2), pp. 588-618, (2025).  | 
|
| 
 [ 13 ]  | 
 R., C. Cárcamo, A.H. Poza, and E. Vino: An adaptive stabilized finite element method for the Stokes-Darcy coupled problem. Journal of Computational and Applied Mathematics, vol 443, Art. Num. 115753, (2024).  | 
|
| 
 [ 12 ]  | 
 A.H. Poza and R. Rebolledo: Equal-order finite element method for the Stokes equations with variable viscosity. Applied Mathematics Letters, vol. 149, article: 108930, (2024).  | 
|
| 
 [ 11 ]  | 
 R. Araya, C. Cárcamo, and A.H. Poza: A stabilized finite element method for the Stokes–Temperature coupled problem. Applied Numerical Mathematics, vol. 187, pp. 24-49, (2023).  | 
|
| 
 [ 10 ]  | 
 R. Araya, C. Cárcamo, and A.H. Poza: An adaptive stabilized finite element method for the Darcy’s equations with pressure dependent viscosities. Computer Methods in Applied Mechanics and Engineering, vol. 387, Paper No. 114100 (2021).  | 
|
| 
 [ 9 ]  | 
 R. Araya, C. Cárcamo, A.H. Poza, and F. Valentin: An adaptive multiscale hybrid-mixed method for the Oseen equations. Advances in Computational Mathematics, vol. 47, 1, pp. 15-36, (2021).  | 
|
| 
 [ 8 ]  | 
 G.R. Barrenechea, A.H. Poza, and H. Yorston: A stabilised finite element method for the convection-diffusion-reaction equation in mixed form. Computer Methods in Applied Mechanics and Engineering, vol. 339, 1, pp. 389-415, (2018).  | 
|
| 
 [ 7 ]  | 
 R. Araya, C. Harder, A.H. Poza, F. Valentin: Multiscale hybrid-mixed method for the Stokes and Brinkman equations-The method. Computer Methods in Applied Mechanics and Engineering, vol. 324, pp. 29-53, (2017).  | 
|
| 
 [ 6 ]  | 
 R. Araya, Abner H. Poza, and F. Valentin: A low-order local projection method for the incompressible Navier-Stokes equations in two and three dimensions. IMA Journal of Numerical Analysis, vol. 36, pp. 267–295, (2016).  | 
|
| 
 [ 5 ]  | 
 R. Araya, A. H. Poza, and F. Valentin: An adaptive residual local projection finite element method for the Navier-Stokes equations. Advances in Computational Mathematics, vol. 5-6, pp. 1093-1119, (2014).  | 
|
| 
 [ 4 ]  | 
 R. Araya, G.R. Barrenechea, A.H. Poza, and F. Valentin: Convergence analysis of a residual local projection fi nite element method for the Navier-Stokes equations. SIAM J. Numer. Anal., 50(2):669-699, (2012).  | 
|
| 
 [ 3 ]  | 
 R. Araya, A.H. Poza, and F. Valentin: On a hierarchical estimator driven by a stabilized method for the reactive incompressible Navier-Stokes equations. Numer. Methods Partial Di erential Equations, 28(3):782-806, (2012).  | 
|
| 
 [ 2 ]  | 
 R. Araya, G.R. Barrenechea, and A.H. Poza: An adaptive stabilized finite element method for the generalized Stokes problem. Journal of Computational and Applied Mathematics, vol. 214, 2, pp. 457-479, (2008).  | 
|
| 
 [ 1 ]  | 
 R. Araya, A.H. Poza, and E.P. Stephan: A hierarchical a posteriori error estimate for an advection-di ffusion-reaction problem. Mathematical Models and Methods in Applied Sciences (M3AS), vol. 15, 7, pp.1119-1139, (2005).  | 

