Enlaces de Interés
- ORCID: 0000-0002-4015-6662
Cursos que Imparte
Pregrado
-
Cálculo 1, 2, y 3
-
Cálculo Numérico
Postgrado
-
Análisis Funcional
-
Cálculo Científico
-
Teoría de Elementos Finitos
- Teoría de Operadores Lineales
Área de Investigación
- Análisis Numérico
Publicaciones
[ 14 ] |
R. Araya, C. Harder, A.H. Poza, and F. Valentin: Multiscale hybrid-mixed methods for the Stokes and Brinkman equations-a priori analysis. SIAM Journal on Numerical Analysis, vol. 63, (2), pp. 588-618, (2025). |
|
[ 13 ] |
R., C. Cárcamo, A.H. Poza, and E. Vino: An adaptive stabilized finite element method for the Stokes-Darcy coupled problem. Journal of Computational and Applied Mathematics, vol 443, Art. Num. 115753, (2024). |
|
[ 12 ] |
A.H. Poza and R. Rebolledo: Equal-order finite element method for the Stokes equations with variable viscosity. Applied Mathematics Letters, vol. 149, article: 108930, (2024). |
|
[ 11 ] |
R. Araya, C. Cárcamo, and A.H. Poza: A stabilized finite element method for the Stokes–Temperature coupled problem. Applied Numerical Mathematics, vol. 187, pp. 24-49, (2023). |
|
[ 10 ] |
R. Araya, C. Cárcamo, and A.H. Poza: An adaptive stabilized finite element method for the Darcy’s equations with pressure dependent viscosities. Computer Methods in Applied Mechanics and Engineering, vol. 387, Paper No. 114100 (2021). |
|
[ 9 ] |
R. Araya, C. Cárcamo, A.H. Poza, and F. Valentin: An adaptive multiscale hybrid-mixed method for the Oseen equations. Advances in Computational Mathematics, vol. 47, 1, pp. 15-36, (2021). |
|
[ 8 ] |
G.R. Barrenechea, A.H. Poza, and H. Yorston: A stabilised finite element method for the convection-diffusion-reaction equation in mixed form. Computer Methods in Applied Mechanics and Engineering, vol. 339, 1, pp. 389-415, (2018). |
|
[ 7 ] |
R. Araya, C. Harder, A.H. Poza, F. Valentin: Multiscale hybrid-mixed method for the Stokes and Brinkman equations-The method. Computer Methods in Applied Mechanics and Engineering, vol. 324, pp. 29-53, (2017). |
|
[ 6 ] |
R. Araya, Abner H. Poza, and F. Valentin: A low-order local projection method for the incompressible Navier-Stokes equations in two and three dimensions. IMA Journal of Numerical Analysis, vol. 36, pp. 267–295, (2016). |
|
[ 5 ] |
R. Araya, A. H. Poza, and F. Valentin: An adaptive residual local projection finite element method for the Navier-Stokes equations. Advances in Computational Mathematics, vol. 5-6, pp. 1093-1119, (2014). |
|
[ 4 ] |
R. Araya, G.R. Barrenechea, A.H. Poza, and F. Valentin: Convergence analysis of a residual local projection fi nite element method for the Navier-Stokes equations. SIAM J. Numer. Anal., 50(2):669-699, (2012). |
|
[ 3 ] |
R. Araya, A.H. Poza, and F. Valentin: On a hierarchical estimator driven by a stabilized method for the reactive incompressible Navier-Stokes equations. Numer. Methods Partial Di erential Equations, 28(3):782-806, (2012). |
|
[ 2 ] |
R. Araya, G.R. Barrenechea, and A.H. Poza: An adaptive stabilized finite element method for the generalized Stokes problem. Journal of Computational and Applied Mathematics, vol. 214, 2, pp. 457-479, (2008). |
|
[ 1 ] |
R. Araya, A.H. Poza, and E.P. Stephan: A hierarchical a posteriori error estimate for an advection-di ffusion-reaction problem. Mathematical Models and Methods in Applied Sciences (M3AS), vol. 15, 7, pp.1119-1139, (2005). |