• Cargo: Profesor Asociado
  • Grado académico: Doctor en Matemática, Universidad Autónoma de Barcelona, España, 2014
  • Dependencia de trabajo: Oficina Nº 2, DMFA
  • Correo electrónico: jgarcias@ucsc.cl
  • Teléfono: +56 - 41 - 2345549

Enlaces de Interés

Área de Investigación

  • Sistemas Dinámicos

Proyectos

  • (Investigador Responsable). Proyecto DIREG 01/2024. Integrabilidad y ciclos límite en sistemas dinámicos suaves y definidos a trozos. (Agosto 2024 – Agosto 2026).
  • (Investigador Principal) 2021-2023 Proyecto DIREG 09/2021. Órbitas periódicas e integrabilidad de Sistemas Dinámicos.
  • 2017-2019 FONDECYT INICIACIÓN 11171115. “Some qualitative and quantitative aspects of the local and global dynamics of continuous dynamical systems”. Investigador Principal.
  • 2015-2017 FONDECYT POSTDOCTORADO 3150131/2015. “Integrabilidad, estabilidad y órbitas periódicas de sistemas dinámicos”. Investigador Patrocinante: Dr. Sergei Trofimchuk (Universidad de Talca).

Publicaciones

[ 15 ]

M. Álvarez-Ramírez, J.D. García-Saldaña and M.G. Medina Valdez: Global dynamics and integrability of a Leslie-Gower predator-prey model with linear functional response and generalist predator. Qual. Theory Dyn. Syst. 23 (2024), No. 294, 19 pp.

DOI

[ 14 ]

J.D. García-Saldaña, J. Llibre and C. Valls: On a class of global centers of linear systems with quintic homogeneous nonlinearities. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 30 (2023), no. 2, 135-148.

DOI

[ 13 ]

M. Álvarez-Ramírez, J.D. García-Saldaña, and M. Medina: Periodic orbits in a three-dimensional galactic potential model via averaging theory. Eur. Phys. J. Plus, 135, 787 (2020).

DOI

[ 12 ]

J.D. García-Saldaña, J. Llibre, and C. Valls: Linear type global centers of linear systems with cubic homogeneous nonlinearities. Rend. Circ. Mat. Palermo (2), 69 (2020), no. 3, 771-785.

DOI

[ 11 ]

J. García-Saldaña, A. Gasull, and H. Giacomini: A new approach for the study of limit cycles. Journal of Differential Equations, 269, 7,  pp. 6269-6292, (2020).

DOI

[ 10 ]

M. Alvarez-Ramirez and J. García-Saldaña: Periodic orbits of a generalized Henon-Heiles system. Journal of Physics A-Mathematical and Theorical.  53,  6 (2020).

DOI

[ 9 ]

J. García-Saldaña, J.Llibre, and C. Valls: Nilpotent global centers of linear systems with cubic homogeneous nonlinearities. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30, 1  (2020).

DOI

[ 8 ]

A. Ferragut, J.D. García-Saldaña, and C. Valls: Phase portraits of Abel quadratic differential systems of second kind with symmetriesDyn. Syst. 34 (2019), no. 2, 301–333.

DOI

[ 7 ]

J.D. García-Saldaña and A. Gasull: Weak periodic solutions of xx”+1=0 and the harmonic balance method. Journal of Physics: Conf. Series, 811 (2017).

DOI

[ 6 ]

M. Alvarez-Ramirez and J.D. García-Saldaña: On the homoclinic orbits of the Lü system. Int. J. Bifurcation Chaos 27, 1750070 (2017).

DOI

[ 5 ]

A. Ferragut, J.D. García-Saldaña, and A. Gasull: Detection of special curves via the double resultant. Qualitative Theory of Dynamical Systems, vol. 16, 101-117,  (2017).

DOI

[ 4 ]

J.D. García-Saldaña and A. Gasull: The period function and the harmonic balance method. Bull. Sci. Math., 139, 33-60, (2015).

DOI

[ 3 ]

J.D. García-Saldaña, A. Gasull, and H. Giacomini: Bifurcation values for a family of planar vector fields of degree five. Discrete Contin. Dynam. Systems, 35, N° 2,  669-701, (2015).

DOI

[ 2 ]

J.D. García-Saldaña, A. Gasull, and H. Giacomini: Bifurcation diagram and stability for a one-parameter family of planar vector fields. J. Math. Anal. Appl., 413, N° 1, 321-342, (2014).

DOI

[ 1 ]

J.D. García-Saldaña and A. Gasull: A theoretical basis for the Harmonic Balance Method. J. Differential Equations, 254, 67-80, (2013).

DOI