• Cargo: Profesor Asociado
  • Grado académico: Doctor en Matemática, Universidad Autónoma de Barcelona, España, 2014
  • Dependencia de trabajo: Oficina Nº 2, DMFA
  • Correo electrónico: jgarcias@ucsc.cl
  • Teléfono: +56 - 41 - 2345549

Enlaces de Interés

Área de Investigación

  • Sistemas Dinámicos

 

Publicaciones

[ 10 ] J. García-Saldaña, A. Gasull, and H. Giacomini: A new approach for the study of limit cycles. Journal of Differential Equations, 269, 7,  pp. 6269-6292, (2020). DOI
[ 9 ] M. Alvarez-Ramirez and J. García-Saldaña: Periodic orbits of a generalized Henon-Heiles system. Journal of Physics A-Mathematical and Theorical.  53,  6 (2020). DOI
[ 8 ] J. García-Saldaña, J.Llibre, and C. Valls: Nilpotent global centers of linear systems with cubic homogeneous nonlinearities. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30, 1  (2020). DOI
[ 7 ] A. Ferragut, J.D. García-Saldaña, and C. Valls: Phase portraits of Abel quadratic differential systems of second kind with symmetriesDyn. Syst. 34 (2019), no. 2, 301–333. DOI
[ 6 ] M. Alvarez-Ramirez and J.D. García-Saldaña: On the homoclinic orbits of the Lü system. Int. J. Bifurcation Chaos 27, 1750070 (2017). DOI
[ 5 ] A. Ferragut, J.D. García-Saldaña, and A. Gasull: Detection of special curves via the double resultant. Qualitative Theory of Dynamical Systems, vol. 16, 101-117,  (2017). DOI
[ 4 ] J.D. García-Saldaña and A. Gasull: The period function and the harmonic balance method. Bull. Sci. Math., 139, 33-60, (2015). DOI
[ 3 ] J.D. García-Saldaña, A. Gasull, and H. Giacomini: Bifurcation values for a family of planar vector fields of degree five. Discrete Contin. Dynam. Systems, 35, N° 2,  669-701, (2015). DOI
[ 2 ] J.D. García-Saldaña, A. Gasull, and H. Giacomini: Bifurcation diagram and stability for a one-parameter family of planar vector fields. J. Math. Anal. Appl., 413, N° 1, 321-342, (2014). DOI
[ 1 ] J.D. García-Saldaña and A. Gasull: A theoretical basis for the Harmonic Balance Method. J. Differential Equations, 254, 67-80, (2013). DOI