Enlaces de Interés
- ORCID: 0000-0002-4475-5064
Área de Investigación
- Sistemas Dinámicos
Proyectos
- (Investigador Responsable). Proyecto DIREG 01/2024. Integrabilidad y ciclos límite en sistemas dinámicos suaves y definidos a trozos. (Agosto 2024 – Agosto 2026).
-
(Investigador Principal) 2021-2023 Proyecto DIREG 09/2021. Órbitas periódicas e integrabilidad de Sistemas Dinámicos.
- 2017-2019 FONDECYT INICIACIÓN 11171115. “Some qualitative and quantitative aspects of the local and global dynamics of continuous dynamical systems”. Investigador Principal.
- 2015-2017 FONDECYT POSTDOCTORADO 3150131/2015. “Integrabilidad, estabilidad y órbitas periódicas de sistemas dinámicos”. Investigador Patrocinante: Dr. Sergei Trofimchuk (Universidad de Talca).
Publicaciones
[ 15 ] |
M. Álvarez-Ramírez, J.D. García-Saldaña and M.G. Medina Valdez: Global dynamics and integrability of a Leslie-Gower predator-prey model with linear functional response and generalist predator. Qual. Theory Dyn. Syst. 23 (2024), No. 294, 19 pp. |
|
[ 14 ] |
J.D. García-Saldaña, J. Llibre and C. Valls: On a class of global centers of linear systems with quintic homogeneous nonlinearities. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 30 (2023), no. 2, 135-148. |
|
[ 13 ] |
M. Álvarez-Ramírez, J.D. García-Saldaña, and M. Medina: Periodic orbits in a three-dimensional galactic potential model via averaging theory. Eur. Phys. J. Plus, 135, 787 (2020). |
|
[ 12 ] |
J.D. García-Saldaña, J. Llibre, and C. Valls: Linear type global centers of linear systems with cubic homogeneous nonlinearities. Rend. Circ. Mat. Palermo (2), 69 (2020), no. 3, 771-785. |
|
[ 11 ] |
J. García-Saldaña, A. Gasull, and H. Giacomini: A new approach for the study of limit cycles. Journal of Differential Equations, 269, 7, pp. 6269-6292, (2020). |
|
[ 10 ] |
M. Alvarez-Ramirez and J. García-Saldaña: Periodic orbits of a generalized Henon-Heiles system. Journal of Physics A-Mathematical and Theorical. 53, 6 (2020). |
|
[ 9 ] |
J. García-Saldaña, J.Llibre, and C. Valls: Nilpotent global centers of linear systems with cubic homogeneous nonlinearities. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30, 1 (2020). |
|
[ 8 ] |
A. Ferragut, J.D. García-Saldaña, and C. Valls: Phase portraits of Abel quadratic differential systems of second kind with symmetries. Dyn. Syst. 34 (2019), no. 2, 301–333. |
|
[ 7 ] |
J.D. García-Saldaña and A. Gasull: Weak periodic solutions of xx”+1=0 and the harmonic balance method. Journal of Physics: Conf. Series, 811 (2017). |
|
[ 6 ] |
M. Alvarez-Ramirez and J.D. García-Saldaña: On the homoclinic orbits of the Lü system. Int. J. Bifurcation Chaos 27, 1750070 (2017). |
|
[ 5 ] |
A. Ferragut, J.D. García-Saldaña, and A. Gasull: Detection of special curves via the double resultant. Qualitative Theory of Dynamical Systems, vol. 16, 101-117, (2017). |
|
[ 4 ] |
J.D. García-Saldaña and A. Gasull: The period function and the harmonic balance method. Bull. Sci. Math., 139, 33-60, (2015). |
|
[ 3 ] |
J.D. García-Saldaña, A. Gasull, and H. Giacomini: Bifurcation values for a family of planar vector fields of degree five. Discrete Contin. Dynam. Systems, 35, N° 2, 669-701, (2015). |
|
[ 2 ] |
J.D. García-Saldaña, A. Gasull, and H. Giacomini: Bifurcation diagram and stability for a one-parameter family of planar vector fields. J. Math. Anal. Appl., 413, N° 1, 321-342, (2014). |
|
[ 1 ] |
J.D. García-Saldaña and A. Gasull: A theoretical basis for the Harmonic Balance Method. J. Differential Equations, 254, 67-80, (2013). |