• Cargo: Profesor Asociado
  • Grado académico: Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción, 2005
  • Dependencia de trabajo: Oficina Nº 1, DMFA
  • Correo electrónico: lgatica@ucsc.cl
  • Teléfono: +56 - 41 - 2345694

Enlaces de Interés

Área de Investigación

  • Análisis Numérico

Publicaciones

[ 17 ] S. Caucao, G.N. Gatica, and L.F. Gatica: A posteriori error analysis of a mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Applied Numerical Mathematics, vol. 211, pp. 158-178, (2025). DOI
[ 16 ] S. Caucao, G.N. Gatica, and L.F. Gatica: A Banach spaces-based mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Calcolo, vol. 60, 4, article: 51, (2023). DOI
[ 15 ] V. Anaya, R. Caraballo, S. Caucao, L.F. Gatica, R. Ruiz-Baier, and I. Yotov: A vorticity-based mixed formulation for the unsteady Brinkman-Forchheimer equations. Computer Methods in Applied Mechanics and Engineering, vol. 404, Art. Num. 115829, (2023). DOI
[ 14 ] P.E. Farrel, L.F. Gatica, B. Lamichhane, R. Oyarzúa, and R. Ruiz-Baier: Mixed Kirchhoff stress-displacement-pressure formulations for incompressible hyperelasticity. Computer Methods in Applied Mechanics and Engineering, vol 374 (2021) 113584. DOI
[ 13 ] L.F. Gatica, R. Oyarzúa, and N. Sánchez: A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier-Stokes-Brinkman problem. Computers and Mathematics with Applications, vol. 75, 7, pp. 2420-2444, (2018). DOI
[ 12 ] L.F. Gatica and F.A. Sequeira: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Computers and Mathematics with Applications, vol. 75, 4, pp. 1191-1212, (2018). DOI
[ 11 ] G.N. Gatica, L.F. Gatica, and F.A. Sequeira: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Computers and Mathematics with Applications, vol. 71, 2, pp. 585-614, (2016). DOI
[ 10 ] G.N. Gatica, L.F. Gatica, and F.A. Sequeira: A RTk-Pk approximation for linear elasticity yielding a broken H(div) convergent postprocessed stressApplied Mathematics Letters, vol 49, pp. 133-140, (2015). DOI
[ 9 ] Z. Fu, L.F. Gatica, and F.-J. Sayas: Algorithm 949: MATLAB Tools for HDG in Three DimensionsACM Transactions on Mathematical Software, vol 41, 3, Article 20, (2015). DOI
[ 8 ] G.N. Gatica, L.F. Gatica, and F.A. Sequeira: Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow. Computer Methods in Applied Mechanics and Engineering, vol. 289, pp. 104-130, (2015). DOI
[ 7 ] L.F. Gatica, G.N. Gatica, and A. Márquez: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numerische Mathematik, vol. 126, 4, pp. 635-677, (2014). DOI
[ 6 ] L.F. Gatica, G.N. Gatica, and A. Márquez: Augmented mixed finite element methods for a vorticity-based velocity-pressure-stress formulation of the Stokes problem in 2D. International Journal for Numerical Methods in Fluids, vol. 67, 4, pp. 450-477, (2011). DOI
[ 5 ] G.N. Gatica, L.F. Gatica, and E.P. Stephan: A dual-mixed finite element method for nonlinear incompressible elasticity with mixed boundary conditions. Computer Methods in Applied Mechanics and Engineering, vol. 196, pp. 3348-3369, (2007). DOI
[ 4 ] L.F. Gatica and G.N. Gatica: On the a-priori and a-posteriori error analysis of a two-fold saddle point approach for nonlinear incompressible elasticity. International Journal for Numerical Methods in Engineering, vol. 68, (8), 861-892, (2006). DOI
[ 3 ] T.P. Barrios, G.N. Gatica, and L.F. Gatica: On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers. Applied Numerical Mathematics, vol. 48, 2, pp. 135-155, (2004). DOI
[ 2 ] L.F. Gatica, G.N. Gatica, and E.P. Stephan: A FEM-DtN formulation for a nonlinear exterior problem in incompressible elasticity. Mathematical Methods in Applied Sciences, vol. 26, 2, pp. 151-170, (2003). DOI
[ 1 ] L.F. Gatica: Sobre la ecuación de Liénard de grado 4. CUBO Revista de Matemática, vol. 12, pp. 39-50, (1997). DOI