- Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes: “A posteriori error analysis of a momentum and thermal energy conservative mixed FEM for the Boussinesq equations”. Calcolo, vol. 59, 4, article: 45, (2022).
- Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, Paulo Zúñiga: “A posteriori error analysis of a mixed finite element method for the coupled Brinkman-Forchheimer and double-diffusion equations”. Journal of Scientific Computing, vol 93, article:50, (2022).
- Tomás P. Barrios, Rommel BUSTINZA, Camila Campos: “An a posteriori error estimator for a non homogeneous Dirichlet problem considering a dual mixed formulation”. Trends in Computational and Applied Mathematics, vol 23, Issue 3, pp 549-568, (2022).
- Sergio Caucao, Tongtong Li, Ivan Yotov: “A multipoint stress-flux mixed finite element method for the Stokes-Biot model”. Numerische Mathematik, vol. 152, pp. 411-473, (2022).
- Lapeña-Mañero, P., García-Casuso, C., Montenegro-Cooper, J. M., King, R. W., Edwin M. Behrens: “An Open-Source System for Generating and Computer Grading Traditional Non-Coding Assignments”. Electronics, 11(6):917, (2022).
- Galindo, M., Breda, A., Chamorro, D. & Alvarado, H. (2022). Analysis of a Teaching Learning Process of the Derivative with the Use of ICT Oriented to Engineering Students in Chile. EURASIA Journal of Mathematics, Science and Technology Education EJMSTE. 18(7). em2130.
- Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes, Ivan Yotov: “A three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations”. Computer Methods in Applied Mechanics and Engineering, vol. 394, Art. Num. 114895, (2022).
- Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica, Alejandro A. Hopper: “A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem”. Calcolo, vol. 59, 1, article: 6, (2022).
- Tomás P. Barrios, Edwin M. Behrens, Rommel Bustinza: “Numerical Analysis of a stabilized mixed method applied to incompressible elasticity problems with Dirichlet and with mixed boundary conditions”. Advances in Computational Mathematics. vol. 48, issue 4, Article Number 43, (2022).
- Jessika Camaño, Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes: “A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem”. Applied Numerical Mathematics, vol. 176, pp. 134-158, (2022).