- Tomás Barrios, Rommel Bustinza, and Camila Campos: A note on a posteriori error estimates for dual mixed methods with mixed boundary condition. Numerical Methods for Partial Differential Equations, vol. 39, 5, pp. 3897-3918, (2023).
- Sergio Carrasco, Sergio Caucao, and Gabriel N. Gatica: New mixed finite element methods for the coupled convective Brinkman-Forchheimer and double-diffusion equations. Journal of Scientific Computing, vol. 97, 3, article: 61, (2023).
- Sergio Caucao, Gabriel N. Gatica, and Luis F. Gatica: A Banach spaces-based mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Calcolo, vol. 60, 4, article: 51, (2023).
- Sergio Caucao, Eligio Colmenares, Gabriel N. Gatica, and Cristian Inzunza: A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem. Computer and Mathematics with Applications, vol. 145, pp. 65-89, (2023).
- Lady Angelo, Jessika Camaño, and Sergio Caucao: A five-field mixed formulation for stationary magnetohydrodynamic flows in porous media. Computer Methods in Applied Mechanics and Engineering, vol. 414, Art. Num. 116158, (2023).
- Sergio Caucao and Marco Discacciati: A mixed FEM for the coupled Brinkman-Forchheimer/Darcy problem. Applied Numerical Mathematics, vol. 190, pp. 138-154, (2023).
- Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: “A posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium”. Computational Geosciences, vol. 27, 2, pp. 289-316, (2023).
- Galindo, M., Breda, A. & Alvarado, H. (2023). Diseño de un proceso de enseñanza de la derivada para estudiantes de ingeniería comercial en Chile. Revista Paradigma. 44, 321-350.
- Rodolfo Araya, Cristian Cárcamo, and Abner H. Poza: “A stabilized finite element method for the Stokes–Temperature coupled problem”. Applied Numerical Mathematics, vol. 187, pp. 24-49, (2023).
- A. Alberti, C. Vidal, and J. Vidarte: “Periodic solutions, KAM tori and Bifurcations in the planar anisotropic Schwarschild-type problem”. SIAM, Journal on Applied Dynamical Systems 22(2), pp. 1053-1075, (2023).
- Ana Alonso-Rodriguez and Jessika Camaño: “A graph-based algorithm for the approximation of the spectrum of the curl operator”. SIAM Journal on Scientific Computing, vol. 45, 1, pp. A147-A169, (2023).
- Ana Alonso-Rodriguez, Jessika Camaño, Eduardo De los Santos, and Rodolfo Rodríguez: “Divergence-free finite elements for the numerical solution of a hydroelastic vibration problem”. Numerical Methods for Partial Differential Equations, vol. 39, pp. 163-186, (2023).
- Verónica Anaya, Ruben Caraballo, Sergio Caucao, Luis F. Gatica, Ricardo Ruiz-Baier, and Ivan Yotov: “A vorticity-based mixed formulation for the unsteady Brinkman-Forchheimer equations”. Computer Methods in Applied Mechanics and Engineering, vol. 404, Art. Num. 115829, (2023).