[ 12 ] P. Concha, N. Merino, and E. Rodríguez: Non-relativistic limit of the Mielke–Baekler gravity theory. Eur. Phys. J. C 84 (2024)  407. DOI
[ 11 ] J. Vidarte, Y. Vera-Damián, and W. Gonzales: Periodic solutions in a Hamiltonian system of stellar type. Physica D. 467, pp. 1-10,  (2024). DOI
[ 10 ] T. Barrios and R. Bustinza: An a posteriori error analysis for an augmented discontinuous Galerkin method applied to Stokes problemNumerical Methods for Partial Differential Equations, vol. 40, 5, e23100, (2024). DOI
[ 9 ] P. Concha, D. Pino, L. Ravera, and E. Rodríguez: Extended kinematical 3D gravity theories. JHEP 01, (2024) 040. DOI
[ 8 ] M. Uribe, J. Vidarte, and D. Carrasco: Periodic solutions in a “D-symmetric Hamiltonian system through reduction and averaging method. Dynamical Systems, pp. 1-20, (2024). DOI
[ 7 ] S. Caucao, G.N. Gatica, and J.P. Ortega: A three-field mixed finite element method for the convective Brinkman-Forchheimer problem with varying porosityJournal of Computational and Applied Mathematics, vol 451, Art. Num. 116090, (2024). DOI
[ 6 ] P. Concha, O. Fierro, and E. Rodríguez: Hietarinta Chern–Simons supergravity and its asymptotic structure. Eur. Phys. J. C, (2024) 102. DOI
[ 5 ] S. Caucao, T. Li, and I. Yotov: An augmented fully-mixed formulation for the quasistatic Navier-Stokes-Biot modelIMA Journal of Numerical Analysis, vol. 44, 2, pp. 1153-1210, (2024). DOI
[ 4 ] R. Araya, C. Cárcamo, A.H. Poza, and E. Vino: An adaptive stabilized finite element method for the Stokes-Darcy coupled problemJournal of Computational and Applied Mathematics, vol 443, Art. Num. 115753, (2024). DOI
[ 3 ] P. Concha, F. IzaurietaE. Rodríguez, and S. Salgado: Four dimensional topological supergravities from transgression field theory. JHEP 05, (2024) 248. DOI
[ 2 ] A.H. Poza and R. Rebolledo: Equal-order finite element method for the Stokes equations with variable viscosityApplied Mathematics Letters, vol. 149, article: 108930, (2024). DOI
[ 1 ] S. Caucao and J. Esparza: An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysisJournal of Computational and Applied Mathematics, vol 438, Art. Num. 115517, (2024). DOI