-
P. Concha, N. Merino, E. Rodríguez, Non-relativistic limit of the Mielke–Baekler gravity theory, Eur. Phys. J. C 84 (2024) 407.
- J. Vidarte, Y. Vera-Damián, and W. Gonzales: “Periodic solutions in a Hamiltonian system of stellar type”. Physica D. 467, pp. 1-10, (2024).
- Tomás Barrios and Rommel Bustinza: An a posteriori error analysis for an augmented discontinuous Galerkin method applied to Stokes problem. Numerical Methods for Partial Differential Equations, vol. 40, 5, e23100, (2024).
- P. Concha, D. Pino, L. Ravera, E. Rodríguez, Extended kinematical 3D gravity theories, JHEP 01 (2024) 040.
-
M. Uribe, J. Vidarte, and D. Carrasco: “Periodic solutions in a “D-symmetric Hamiltonian system through reduction and averaging method”. Dynamical Systems, pp. 1-20, (2024).
- Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: A three-field mixed finite element method for the convective Brinkman-Forchheimer problem with varying porosity. Journal of Computational and Applied Mathematics, vol 451, Art. Num. 116090, (2024).
- P. Concha, O. Fierro, E. Rodríguez, Hietarinta Chern–Simons supergravity and its asymptotic structure, Eur. Phys. J. C 84 (2024) 102.
- Sergio Caucao, Tongtong Li, and Ivan Yotov: An augmented fully-mixed formulation for the quasistatic Navier-Stokes-Biot model. IMA Journal of Numerical Analysis, vol. 44, 2, pp. 1153-1210, (2024).
- Rodolfo Araya, Cristian Cárcamo, Abner H. Poza, and Eduardo Vino: An adaptive stabilized finite element method for the Stokes-Darcy coupled problem. Journal of Computational and Applied Mathematics, vol 443, Art. Num. 115753, (2024).
- P. Concha, F. Izaurieta, E. Rodríguez, S. Salgado, Four dimensional topological supergravities from transgression field theory, JHEP 05 (2024) 248.
- Abner H. Poza, and Ramiro Rebolledo: Equal-order finite element method for the Stokes equations with variable viscosity. Applied Mathematics Letters, vol. 149, article: 108930, (2024).
- Sergio Caucao and Johann Esparza: An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, vol 438, Art. Num. 115517, (2024).