[ 11 ]

T. Barrios, E. Behrens, R. Bustinza, and J.M. Cascón: An a posteriori error estimator for an augmented variational formulation of the Brinkman problem with mixed boundary conditions and non-null source terms. Journal of Computational Physics. vol 537. (19 pages). Article number 114056. (2025).

DOI

[ 10 ]

M. Galindo, A. Breda, H. Alvarado and G. Sala-Sebastiá: Characterization of sub-fields of derivative problems in engineering textbooks. EURASIA Journal of Mathematics, Science and Technology Education EJMSTE. 21(3). em2591, (2025).

DOI

[ 9 ]

R. Araya, C. Harder, A.H. Poza, and F. Valentin: Multiscale hybrid-mixed methods for the Stokes and Brinkman equations-a priori analysis. SIAM Journal on Numerical Analysis, vol. 63, (2), pp. 588-618, (2025).

DOI

[ 8 ]

E. Martínez, J. Vidarte, and J. Zapata: Modeling and dynamics near irregular elongated asteroids. Celestial Mechanics and Dynamical Astronomy. 137, pp. 1-15, (2025).

DOI

[ 7 ]

E. Martínez, J. Vidarte, and J. Zapata: Periodic orbits and KAM tori of a particle around a homogeneous elongated body. Dynamical Systems.  40, pp. 1-11, (2025).

DOI

[ 6 ]

F. Crespo, J. Vidarte, and J. Villafañe: Symplectic Reeb atlas and determination of periodic solutions in perturbed isotropic n-oscillators. Journal of Mathematical Analysis and Applications. 543, pp. 1-17, (2025).

DOI

[ 5 ]

J. Camaño, R. Oyarzúa, M. Serón, and M. Solano: A strong mass conservative finite element method for the Navier-Stokes/Darcy coupled system. Applied Mathematics Letters, vol. 163, Paper No. 109447, (2025).

DOI

[ 4 ]

G.N. Gatica, C. Inzunza, and R. Ruiz-Baier: Primal-mixed finite element methods for the coupled Biot and Poisson-Nernst-Planck equations. Computers & Mathematics with Applications, vol. 186, pp. 53-83, (2025).

DOI

[ 3 ]

S. Caucao, G.N. Gatica, and L.F. Gatica: A posteriori error analysis of a mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Applied Numerical Mathematics, vol. 211, pp. 158-178, (2025).

DOI

[ 2 ]

I. Bermudez, J. Camaño, R. Oyarzúa, and M. Solano: A conforming mixed finite element method for a coupled Navier–Stokes/transport system modelling reverse osmosis processes. Computer Methods in Applied Mechanics and Engineering, vol. 433, Parte A, 1, Paper No. 117527, (2025).

DOI

[ 1 ]

S. Caucao, G.N. Gatica, S.R. Medrado, and Y.D. Sobral: Nonlinear twofold saddle point-based mixed finite element methods for a regularized mu(I)-rheology model of granular materials. Journal of Computational Physics, vol. 520, Art. Num. 113462, (2025).

DOI